Decision Models Lecture 4 1

Lecture 4

- O Multi-period Planning Models
- O Cash-Flow-Matching LP
 - Project-funding example
- Summary and Preparation for next class

Multi-period Planning Models

In many settings we need to plan over a time horizon of many periods because

- decisions for the current planning period affect the future
- requirements in the future need action now

Examples include:

- Production / inventory planning
- Human resource staffing
- Investment problems
- Capacity expansion / plant location problems

National Steel Corporation

 National Steel Corporation (NSC) produces a special-purpose steel used in the aircraft and aerospace industries. The sales department has received orders for the next four months:

	Jan	Feb	Mar	Apr
Demand (tons)	2300	2000	3100	3000

 NSC can meet demand by producing the steel, by drawing from its inventory, or a combination of these. Inventory at the beginning of January is zero. Production costs are expected to rise in Feb and Mar. Production and inventory costs are:

	Jan	Feb	Mar	Apr
Production cost	3000	3300	3600	3600
Inventory cost	250	250	250	250

- Production costs are in \$ per ton. Inventory costs are in \$ per ton per month. For example, 1 ton in inventory for 1 month costs \$250; for 2 months, it costs \$500.
- NSC can produce at most 3000 tons of steel per month. What production plan meets demand at minimum cost?

NSC Production Model Overview

• What needs to be decided?

A production plan, i.e., the amount of steel to produce in each of the next 4 months.

• What is the objective?

Minimize the total production and inventory cost. These costs must be calculated from the decision variables.

• What are the constraints?

Demand must be met each month. Constraints to define inventory in each month. Production-capacity constraints. Non-negativity of the production and inventory quantities.

- NSC optimization model in general terms:
 - min Total Production plus Inventory Cost

subject to:

- Production-capacity constraints
- O Flow-balance constraints
- Nonnegative production and inventory

NSC Multi-period Production Model

- Index: Let i = 1, 2, 3, 4 represent the months Jan, Feb, Mar, and Apr, respectively.
- O Decision Variables: Let

 $P_i = \#$ of tons of steel to produce in month *i*

 $I_i = \#$ of tons of inventory from month *i* to *i*+1

Note: The production variables P_i are the main decision variables, because the inventory levels are determined once the production levels are set. Often the P_i s are called *controllable* decision variables and the I_i s are called *uncontrollable* decision variables.

• *Objective Function:*

The total cost is the sum of production and inventory cost. Total production cost, *PROD*, is:

 $PROD = 3000 P_1 + 3300 P_2 + 3600 P_3 + 3600 P_4.$ Total inventory cost, *INV*, is:

 $INV = 250 I_1 + 250 I_2 + 250 I_3 + 250 I_4$.

Demand Constraints

• In order to meet demand in the first month, we want

 $P_1 \ge 2300.$

Set

$$I_1 = P_1 - 2300$$

and note that $P_1 \ge 2300$ is equivalent to $I_1 \ge 0$.

 In order to meet demand in the second month, the tons of steel available must be at least 2000:

$$I_1 + P_2 \ge 2000.$$

Set

 $I_2 = I_1 + P_2 - 2000$

and note that $I_1 + P_2 \ge 2000$ is equivalent to $I_2 \ge 0$.

• The inventory and non-negativity constraints:

(Month 1) $I_1 = P_1 - 2300, \quad I_1 \ge 0$ (Month 2) $I_2 = I_1 + P_2 - 2000, \quad I_2 \ge 0$ (Month 3) $I_3 = I_2 + P_3 - 3100, \quad I_3 \ge 0$

define the inventory decision variables and enforce the demand constraints.

NSC Production Model (continued)

• Another way to view the constraints: The inventory variables link one period to the next. The inventory definition constraints can be visualized as "flow balance" constraints:

• Flow-balance constraints for each month

Flow in = Flow out

- (Month 1) $P_1 = I_1 + 2300$ (Month 2) $I_1 + P_2 = I_2 + 2000$ (Month 3) $I_2 + P_3 = I_3 + 3100$
- Are there any other constraints? Production cannot exceed 3000 tons in any month:

$$P_i \leq 3000$$
 for $i = 1, 2, 3, 4$.

NSC Linear Programming Model

Min *PROD + INV*

subject to:

• Cost Definitions:

 $(PROD \text{ Def.}) PROD = 3000 P_1 + 3300 P_2 + 3600 P_3 + 3600 P_4.$ (INV Def.) INV = 250 I_1 + 250 I_2 + 250 I_3 + 250 I_4.

• Production-capacity constraints:

 $P_i \leq 3000, i = 1, 2, 3, 4.$

• Inventory-balance constraints:

		(Flow in $=$ Flow out)
	(Month 1)	$P_1 = I_1 + 2300$
	(Month 2)	$I_1 + P_2 = I_2 + 2000$
	(Month 3)	$I_2 + P_3 = I_3 + 3100$
	(Month 4)	$I_3 + P_4 = I_4 + 3000$
0	Nonnegativity:	All variables ≥ 0

NSC Optimized Spreadsheet

• The optimal solution has a total cost of \$35,340,000.

Multi-period Models in Practice

• Most multi-period planning systems operate on a *rolling-horizon basis:*

- A *T*-period model is solved in January and the optimal solution is used to determine the plan for January. In February, a new *T*-period model is solved, incorporating updated forecasts and other new information. The optimal solution is used to determine the plan for February.
- Often long-horizon models are used to estimate needed capacity and determine aggregate planning decisions (*strategic issues*). Then more detailed short-horizon models are used to determine daily and weekly operating decisions (*tactical issues*).

Project-Funding Problem

 A company is planning a 3-year renovation of its facilities and would like to finance the project by buying bonds now (in 2000). A management study has estimated the following cash requirements for the project:

	Year 1	Year 2	Year 3
	2001	2002	2003
Cash Requirements (in \$ mil)	20	30	40

• The investment committee is considering four government bonds for possible purchase. The price and cash flows of the bonds (in \$) are:

Rond Cash Flows

	Bond 1	Bond 2	Bond 3	Bond 4	
2000	-1.04	-1.00	-0.98	-0.92	
2001	0.05	0.04	1.00	0.00	
2002	0.05	1.04		1.00	
2003	1.05				

• What is the least expensive portfolio of bonds whose cash flows equal or exceed the requirements for the project?

Linear-Programming Formulation

o Decision Variables: Let

 $X_i = #$ of bond *j* to purchase today (in millions of bonds)

• *Objective function:*

Minimize the total cost of the bond portfolio (in \$ million):

min 1.04 X_1 + 1.00 X_2 + 0.98 X_3 + 0.92 X_4 .

- Constraints:
 - In each year, the cash flow from the bonds should equal or exceed the project's cash requirements:

Cash flow from bonds \geq Requirement

This leads to three constraints:

(yr. 2001)	$0.05 X_1 +$	0.04 X ₂ +	X_3		≥20
(yr. 2002)	0.05 X_1 +	1.04 <i>X</i> ₂		+ X ₄	≥ 30
(yr. 2003)	1.05 <i>X</i> 1				≥ 40

Finally, the nonnegativity constraints:

 $X_j \ge 0, \quad j = 1, 2, 3, 4.$

• In this formulation, what happens to any excess cash in a given year?

Surplus-Cash Modification

- Now suppose that any surplus cash from one year can be carried forward to the next year with 1% interest. How can the LP formulation be modified?
- The surplus cash in year 2001 is:

 $0.05 X_1 + 0.04 X_2 + X_3 - 20$.

Multiplying this amount by 1.01 and adding to the cash available in 2002 gives:

 $0.05 X_1 + 1.04 X_2 + X_4 + 1.01(0.05 X_1 + 0.04 X_2 + X_3 - 20) \ge 30$. This can be simplified to

 $0.1005 X_1 + 1.0804 X_2 + 1.01 X_3 + X_4 \ge 50.2$.

The surplus cash in 2002 is:

 $0.1005 X_1 + 1.0804 X_2 + 1.01 X_3 + X_4 - 50.2$.

This amount could be multiplied by 1.01 and added to the cash available in 2003.

• This is getting *ugly*. Is there a better way?

Surplus-Cash Modification (continued)

- A better way is to define *surplus cash* variables:
 - C_i = surplus cash in year *i*, in \$ millions, where *i* = 1 (2001), 2 (2002), 3 (2003).
- Constraints:
 - In each year, the cash-balance constraints can be written as:

Cash in = Cash out

or, in more detail,

Cash from bonds + Surplus cash from previous year

= Requirement + Cash for next year

- This leads to three constraints:
 - (yr. 2001) 0.05 X_1 + 0.04 X_2 + X_3 = 20 + C_1 (yr. 2002) 0.05 X_1 + 1.04 X_2 + X_4 + 1.01 C_1 = 30 + C_2 (yr. 2003) 1.05 X_1 + 1.04 X_2 + 1.01 C_2 = 40 + C_3
- And, as usual, we add the non-negativity constraints:

$$C_i \ge 0, \quad i = 1, 2, 3.$$

Project-Funding Linear Program

• The complete modified linear program is:

min 1.04 X_1 + 1.00 X_2 + 0.98 X_3 + 0.92 X_4 subject to:

• The cash constraints can be visualized as "flow-balance equations" at each time period:

Project-Funding Optimized Spreadsheet

Objective Function = SUMPRODUCT(C6:F6,C7:F7) С E F G Η Α В D **PROJFUND.XLS Project Funding Spreadsheet** 2 383.20 Reinvestment rate.....1.01 Total cost..... Decision 4 Variables 5 Bond 1 Bond 2 Bond 3 Bond 4 6 # to purchase (in millions) 18.10 28.10 38.10 0.00 7 Bond price 0.98 0.92 1.04 1.00 8 9 Year Cash flow per bond 10 2001 0.05 0.04 1 0 11 2002 0.05 1.04 0 1 2003 12 1.05 0 0 0 13 14 Cash Reinvest Surplus Cash 15 cash prev = Req'mnt + from + cash =C17+D17-E17 16 Year bonds year 17 2001 20.00 20.00 0.00 0 18 30.00 30.00 0.00 2002 0.00 19 0.00 2003 40.00 40.00 0.00 =SUMPRODUCT(\$C\$6:\$F\$6,C10:F10) ÷\$G\$3*F17

- Decision variables: Located in cells C6:F6.
- Cell D17 contains the value 0, since there is no surplus cash from the previous year.

Project-Funding Optimal Solution

	Bond 1	Bond 2	Bond 3	Bond 4
Bond price:	1.04	1.00	0.98	0.92
Number to purchase (in millions):	38.10	0.00	18.10	28.10
Total cost: \$83.20 million.				

Note: $C_i = 0$, for i = 1, 2, 3, i.e., there is no surplus cash in any year.

Determining Discount Rates over Time using SolverTable

- What is the added cost (today, in 2000) of an increase in \$1 million in the cash requirements a year from now (in 2001)? In 2002? In 2003?
- These are the *discount rates over time*.

Ο

- To determine these discount rates, we will need to solve a number of new problems where we increase, one by one, the requirement in each of the years.
- This can be done in a clever way using SolverTable.

Determining Discount Rates over Time

The trick: The IF() statements will add \$1 to the requirement of the "current year" entered in Input Cell A17.

SolverTable Parameters

• In SolverTable, make a Oneway table. Enter the following parameters:

Parameters for oneway table
If you already ran a oneway SolverTable on this sheet, the previous settings are shown. Of course, you can enter new values if you like.
Input cell: Model!\$A\$17
Values of input to use for table
Base input values on following:
Minimum value: 2000
Maximum value: 2003
Increment: 1
O Lise the values below (separate with commas)
Toput values:
Output cell(s): Model!\$C\$3,Model!\$C\$6:\$F\$6
Location of table: Model!\$A\$22 _ (upper left cell of table)
Note: Be careful. The table will write over anything in its way! You might want to delete any old tables before creating any new ones.

- The input cell (A17) will vary from 2000 to 2003, in increments of 1 year. We record the *total cost* and the *optimal portfolio of bonds* in the space below the current model.
- The IF() statements in E17:E19 will correctly add \$1 to the requirement in the "current year" (entered in input cell A17).

SolverTable Output and Discount Rates

• The output from SolverTable as well as the calculations of the discount rates and the yield are:

• The discount rates over time are:

		Present Value			
		of additional \$1	Yield		
►	\$1 in year 2001:	\$0.98	2.04%		
▶	\$1 in year 2002:	\$0.92	4.26%		
▶	\$1 in year 2003:	\$0.90	3.57%		

Cash-Flow-Matching Linear Programs

The project funding LP is one example of a *cash-flow-matching LP*, also called an *asset-liability-matching LP*. The bonds purchased are *assets* and the project requirements are *liabilities*. The cash-flow-matching linear program is one approach to problems in *asset-liability management*. Related applications are:

- O Pension planning
 - Pension-fund assets are short term
 - Pension liabilities are long term
 - Determine the least-cost portfolio of bonds purchased today that can guarantee funding of future liabilities
- Municipal-bond issuance
 - Bonds issued are liabilities (long term)
 - Cash is raised today (short term)
 - Determine the maximum amount of funds that can be raised today given forecasts of future tax collections

Cash-Flow-Matching LPs (continued)

- Yield-curve estimation
 - Can generate discount factors over time
- Corporate debt defeasance
 - Bonds purchased today can be used to remove long-term liabilities from corporate balance sheets
- Cash-flow-matching LPs have been used on Wall Street to buy and sell (issue) trillions of dollars of government, corporate, and municipal bonds.

For next class

- Read Chapter 5.1 and 5.5 in the W&A text.
- Read pp.310-313 and Chapter 6.11 in the W&A text.