Decision Models Lecture 6 1

Lecture 6

- O Portfolio Optimization I
 - Introduction to the Mean-Variance Model
- O Overview of Non-Linear Programming
- A Portfolio Optimization Example with Ten Stocks
- Summary and Preparation for next class

Portfolio Optimization

Problem: What portfolio to invest in today given an uncertain future?

This investment problem is often called an *asset-allocation* or *portfolio-selection* decision. The assets or securities could include Treasury bonds, options, mortgage-backed securities, foreign stocks, real estate, etc.

Example. Suppose an investor is considering investing in 3 asset classes: (1) stocks, (2) bonds, and (3) T-bills.

Suppose the investor has a budget of \$2,000,000 and the investor's portfolio consists of \$1,200,000 in stocks, \$600,000 in bonds, and \$200,000 in T-bills.

- Index the asset classes by j = 1, ..., n. Define the *decision variables* x_j = fraction of budget invested in asset class j.
 For this example, the investor's portfolio is (x₁, x₂, x₃) = (0.6, 0.3, 0.1).
- **Definition:** A *portfolio* is an allocation x_j , j = 1, ..., n, satisfying $\sum_{j=1}^n x_j = 1$ and $x_j \ge 0$ for j = 1, ..., n. Note: $x_j \ge 0$ prohibits *short sales*.

A Model of the Uncertain Future

Consider a 1-period model with a finite number of future scenarios.

 p_i = probability scenario *i* occurs

Definition: A *scenario* is a list of returns for the *n* securities.

Scenario Returns and Probabilities

Table. (Monthly returns)

	Prob.	Security 1	Security 2	Security 3
Scenario 1	0.20	5.51%	4.80%	2.56%
2	0.35	-1.24%	0.61%	0.16%
3	0.15	5.46%	3.60%	-1.64%
4	0.30	-1.70%	-1.30%	0.30%

Let r_{ij} denote the return of security *j* if scenario *i* occurs. For example, r_{32} =3.60%. Where do the scenarios come from?

- Historical returns
- Security analysts' forecasts
- Economic/Financial models
- A combination of the above

Portfolio Returns

If scenario *i* occurs, what is the return of the portfolio $(x_1, ..., x_n)$? The portfolio return if scenario *i* occurs, denoted r_i , is

$$r_i = \sum_{j=1}^n r_{ij} x_j.$$
 (1)

Portfolio Returns (continued)

• Example. Suppose the investor's portfolio is $(x_1, x_2, x_3) = (0, 0.8, 0.2)$. Then, from equation (1), the portfolio returns in the four scenarios are:

Scenario 1: $r_1 = 5.51(0) + 4.80(0.8) + 2.56(0.2) = 4.35$ Scenario 2: $r_2 = -1.24(0) + 0.61(0.8) + 0.16(0.2) = 0.52$ Scenario 3: $r_3 = 5.46(0) + 3.60(0.8) - 1.64(0.2) = 2.55$ Scenario 4: $r_4 = -1.70(0) - 1.30(0.8) + 0.30(0.2) = -0.98$ This distribution of returns can be plotted as follows:

• Different portfolios will have different distributions of returns. How can an investor express a preference for one distribution over another?

Preferences for Return Distributions

The returns in Distribution 2 are higher than the returns in Distribution
 1. Hence, most rational investors would prefer 2 to 1. Generally, though, one distribution will not dominate another in this way. So how can we express a preference over complicated distributions?
 One way is to summarize a distribution is by its *average return*.

Average Portfolio Return

Definition: A portfolio's *average return* of a portfolio, denoted r_P , is

$$r_{P} = \sum_{i=1}^{m} p_{i} r_{i}.$$
 (2)

• The average return is the return of the portfolio in each scenario (r_i) weighted by the probability that the scenario occurs (p_i) . In the example,

 $r_P = 0.20(4.35) + 0.35(0.52) + 0.15(2.55) + 0.30(-0.98) = 1.14\%.$

• The average summarizes the *location* of a distribution with a single number: Probability

- Most investors would prefer r_P to be as large as possible, everything else equal.
- What else matters ?

Suppose $r_P = 1\%$. This is the average, and the actual return could differ substantially from that value. *Risk* can be measured by the *uncertainty*.

Standard Deviation of Return

- One measure of risk is the *standard deviation* (*SD*) of returns.
- The standard deviation is calculated as follows. First calculate the average return. We got $r_P = 1.14\%$:

(1)	(2)	(3)	(4)
Portfolio	Deviation	Squared	Proba-
return	from r _P	Deviation	bility
	$(r_{i} - r_{P})$	$(r_{i} - r_{P})^{2}$	
$r_1 = 4.35$	+ 3.21	10.31	0.20
$r_2 = 0.52$	- 0.62	0.39	0.35
$r_3 = 2.55$	+ 1.41	1.99	0.15
$r_{4} = -0.98$	- 2.12	4.50	0.30

Using columns (3) and (4), we calculate first the variance:

Variance =
$$\sum_{i=1}^{m} p_i (r_i - r_p)^2$$

= 0.20(10.31) + 0.35(0.39) + 0.15(1.99) + 0.30(4.50)
= 3.85

Decision Models Lecture 6 9

Standard Deviation of Return (cont.)

• The standard deviation (SD) is the square root of the variance, i.e.:

Standard Deviation (*SD*) =
$$\sqrt{Variance}$$

= $\sqrt{3.85}$
= 1.96

For portfolio $(x_1, x_2, x_3) = (0, 0.8, 0.2)$: $r_P = 1.14\%$ and SD = 1.96%.

Standard Deviation (continued)

• Most investors prefer *small SD*, all else equal.

For portfolio $(x_1, x_2, x_3) = (0, 0.8, 0.2), r_P = 1.14\%$ and SD = 1.96%. What are r_P and SD for the portfolio (1,0,0), i.e., 100% invested in security 1? For this portfolio, we have

 $r_P = 0.20(5.51) + 0.35(-1.24) + 0.15(5.46) + 0.30(-1.70) = 0.98\%.$

(1)	(2)	(3)	(4)
Portfolio	Deviation	Squared	Proba-
return	from r _P	Deviation	bility
$r_1 = 5.51$	+ 4.53	20.55	0.20
<i>r</i> ₂ = -1.24	- 2.22	4.92	0.35
$r_3 = 5.46$	+ 4.48	20.10	0.15
$r_4 = -1.70$	- 2.68	7.17	0.30

Variance = 0.20(20.55) + 0.35(4.92) + 0.15(20.10) + 0.30(7.17) = 10.99.

$$SD = \sqrt{Variance} = \sqrt{10.99} = 3.32.$$

For portfolio $(x_1, x_2, x_3) = (1, 0, 0)$: $r_P = 0.98\%$ and SD = 3.32%. This portfolio has a smaller average return and larger risk (as measured by *SD*) compared to the portfolio (0, 0.8, 0.2). Portfolio (0, 0.8, 0.2) *dominates* portfolio (1, 0, 0).

Efficient Frontier

• For any portfolio $(x_1, ..., x_n)$ with $\sum_{j=1}^n x_j = 1$ and $x_j \ge 0$, we can compute the corresponding average portfolio return r_P and standard deviation (*SD*). The set of all feasible portfolios is as follows:

• Average return and risk are *two conflicting objectives*. Since we can't have two objective functions in an optimization model, choose one to be the objective and the other to be a constraint.

Portfolio-Optimization Model

• One formulation of the portfolio-optimization model is: over all feasible portfolios, minimize "risk" (e.g., *SD*) subject to "reward" (e.g., r_P) at least some user-specified level. That is,

 $\begin{array}{ll} \min & SD \\ \text{subject to:} \\ (\text{Average return}) & r_P \geq \delta \\ & (\text{Budget}) & x_1 + x_2 + x_3 + \dots + x_n = 1 \\ (\text{No short Sales}) & x_i \geq 0 \text{ for all } j \end{array}$

- \circ δ is a user-supplied constant, indicating the minimum level of average return that the investor is willing to accept.
- This is a *non-linear* model.

• Next we specify the details of the optimization model.

Details of the Optimization Model

Table. (Monthly returns expressed in percent)

	Prob.	Security 1	Security 2	Security 3
Scenario1	0.20	5.51	4.80	2.56
2	0.35	-1.24	0.61	0.16
3	0.15	5.46	3.60	-1.64
4	0.30	-1.70	-1.30	0.30

Given a portfolio (x_1 , x_2 , x_3) the portfolio returns in each scenario are:

Scenario 1: $r_1 = 5.51 x_1 + 4.80 x_2 + 2.56 x_3$ Scenario 2: $r_2 = -1.24 x_1 + 0.61 x_2 + 0.16 x_3$ Scenario 3: $r_3 = 5.46 x_1 + 3.60 x_2 - 1.64 x_3$ Scenario 4: $r_4 = -1.70 x_1 - 1.30 x_2 + 0.30 x_3$ Then the average portfolio return is

 $r_P = 0.20 r_1 + 0.35 r_2 + 0.15 r_3 + 0.30 r_4$.

Mean-Variance Portfolio-Optimization Model

The complete *non-linear* optimization model can be written as:

min SD

subject to:

$$\begin{array}{ll} (r_1 \ {\rm def.}) & r_1 = 5.51 \ x_1 + 4.80 \ x_2 + 2.56 \ x_3 \\ (r_2 \ {\rm def.}) & r_2 = -1.24 \ x_1 + 0.61 \ x_2 + \ 0.16 \ x_3 \\ (r_3 \ {\rm def.}) & r_3 = 5.46 \ x_1 + 3.60 \ x_2 - 1.64 \ x_3 \\ (r_4 \ {\rm def.}) & r_4 = -1.70 \ x_1 - 1.30 \ x_2 + \ 0.30 \ x_3 \\ (r_p \ {\rm def.}) & r_p = 0.20 \ r_1 + 0.35 \ r_2 + \ 0.15 \ r_3 + 0.30 \ r_4 \\ ({\rm Min.} \ r_p) & r_p \ge \delta \\ ({\rm Risk}) & SD = {\rm SQRT} \ [\ 0.20(r_1 - r_p)^2 + 0.35(r_2 - r_p)^2 + 0.15(r_3 - r_p)^2 \\ & + 0.30(r_4 - r_p)^2 \] \\ ({\rm Budget}) & x_1 + x_2 + x_3 = 1 \\ ({\rm nonneg.}) & x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0. \end{array}$$

This formulation can easily be set up in a spreadsheet, but it is a *non-linear* model since the standard deviation involves squares and square-roots.

Spreadsheet Solution

=SUMPRODUCT(\$F\$5:\$H\$5,F14:H14)

• The spreadsheet shows the optimal solution corresponding to $\delta = 1.0$ (where δ is set in cell C7).

Solver Parameters

Solver Parameters	? ×
S <u>e</u> t Target Cell: \$D\$5 5	<u>S</u> olve
Equal To: O <u>M</u> ax OMin O <u>V</u> alue of: O By Changing Cells:	Close
Subject to the Constraints:	Options
\$C\$5 >= \$C\$7 \$J\$5 = \$J\$7	
	Reset All
Delete Delete	<u> </u>

The solver parameters dialog box.

• Remember: do not click on "Assume Linear Model" since it is a non-linear model.

Optimization-Model Results

• For $\delta = 1.0$, the optimal solution is:

 $x_1 = 0.000, \ x_2 = 0.645, \ x_3 = 0.355$ $r_1 = 4.01\%, \ r_2 = 0.45\%, \ r_3 = 1.74\%, \ r_4 = -0.73\%$ with SD = 1.70% and $r_P = 1.00\%$.

• Using SolverTable, we can vary δ and graph the optimal solutions to the problem. These trace out the *efficient frontier*.

Comments on the Mean-Variance Model

- Alternate formulation: maximize return subject to a user-specified maximum risk (SD).
- The mean-variance approach leads to a nonlinear model
 - This non-linear model is more difficult to solve than a linear one, but Excel can solve it.
 - Variance penalizes upside and downside returns
 - Less sensitivity-analysis information available with nonlinear programs
 - Right-hand side ranges are not given for nonlinear models (so tracing the efficient frontier is more difficult)
- Because we are using the security returns directly, it is *not necessary* to compute a variance-covariance matrix of security returns. However, that approach would give *the same answer*.
- Alternative models: Use a measure of risk, e.g. Average Downside Risk (ADR), which can be formulated as a linear model.

Nonlinear Programming

 $\min_{x} y = x \sin(\pi x)$ subject to: (Upper bound) $x \le 6$ (Lower bound) $x \ge 0$

Nonlinear Programming (continued)

Starting from x = 0: the optimizer converges to

x* = 1.56, y* = -1.53.

Starting from x = 3: the optimizer converges to

x* = 3.53, y* = -3.51.

Starting from x = 5: the optimizer converges to

x* = 5.52, y* = -5.51.

(1) and (2) are *local minima* of the nonlinear program.

(3) is the global minimum, i.e., it is the true optimal solution.

 In general, optimizers are not guaranteed to give global optimal solutions to nonlinear programs.

Nonlinear Programming (continued)

• Not all nonlinear programs have local optima. In fact, mean-variance models are well-behaved: the only local optimum is also a global optimum. A sample graph of portfolio standard deviation versus portfolio weights x_1 and x_2 is given below. For mean-variance problems, the optimizer should return the correct global-optimal solution.

Portfolio-Optimization (continued)

 Using historical stock-return data, it is possible to develop meaningful scenarios. Consider the following ten stocks: Apple, GM, IBM, Merck, Ford, J&J, P&G, Sun, Intel and Microsoft. We list their monthly returns during the period from January 1996 to December 1997 (24 months).

	SUN	MSFT	GM	IBM	APPLE	P&G	J&J	MERCK	FORD	INTEL
Jan-96	0.8%	5.4%	-0.5%	18.7%	-13.3%	1.2%	12.3%	6.9%	2.2%	-2.7%
Feb-96	14.1%	6.7%	-2.6%	13.0%	-0.5%	-2.4%	-2.6%	-5.5%	5.9%	6.5%
Mar-96	-16.7%	4.5%	3.9%	-9.3%	-10.7%	3.4%	-1.3%	-6.0%	10.0%	-3.3%
Apr-96	24.0%	9.8%	1.9%	-3.1%	-0.8%	-0.3%	0.3%	-2.8%	4.4%	19.1%
May-96	15.4%	4.9%	1.6%	-0.9%	7.2%	4.0%	5.3%	6.8%	1.7%	11.4%
Jun-96	-6.0%	1.2%	-5.0%	-7.3%	-19.6%	3.1%	1.7%	0.0%	-11.3%	-2.7%
Jul-96	-7.2%	-1.9%	-6.9%	8.6%	4.8%	-1.5%	-3.5%	-0.6%	0.0%	2.3%
Aug-96	-0.5%	3.9%	1.8%	6.4%	10.2%	-0.4%	3.1%	2.1%	3.5%	6.2%
Sep-96	14.3%	7.7%	-3.3%	8.9%	-8.5%	9.7%	4.1%	7.2%	-6.7%	19.6%
Oct-96	-1.8%	4.1%	11.7%	3.6%	3.7%	1.5%	-3.9%	5.0%	0.0%	15.1%
Nov-96	-4.5%	14.3%	7.5%	23.5%	4.9%	9.8%	8.1%	12.4%	4.8%	15.5%
Dec-96	-11.8%	5.3%	-3.3%	-4.9%	-13.5%	-1.0%	-6.6%	-4.1%	-1.5%	3.2%
Jan-97	23.6%	23.4%	5.8%	3.5%	-20.4%	7.4%	16.1%	13.8%	-0.4%	23.9%
Feb-97	-2.8%	-4.4%	-1.9%	-8.4%	-2.3%	3.9%	-0.4%	1.7%	2.3%	-12.6%
Mar-97	-6.5%	-6.0%	-4.3%	-4.5%	12.3%	-4.5%	-8.0%	-8.5%	-4.6%	-1.9%
Apr-97	-0.2%	32.5%	4.5%	16.9%	-6.8%	9.6%	15.6%	7.3%	10.8%	10.1%
May-97	11.9%	2.1%	-0.9%	7.8%	-2.2%	9.6%	-1.8%	-0.6%	7.9%	-1.1%
Jun-97	15.4%	1.9%	-2.8%	4.3%	-14.3%	2.4%	7.3%	13.8%	1.3%	-6.4%
Jul-97	22.8%	12.0%	11.0%	17.2%	22.8%	7.7%	-3.5%	1.5%	7.6%	29.5%
Aug-97	5.6%	-6.6%	1.4%	-4.1%	24.3%	-12.5%	-8.8%	-11.6%	5.2%	0.3%
Sep-97	-3.0%	0.1%	6.7%	4.6%	-0.3%	3.8%	1.8%	8.9%	4.9%	0.2%
Oct-97	-26.8%	-1.7%	-4.1%	-7.1%	-21.5%	-1.5%	-0.5%	-10.7%	-3.2%	-16.6%
Nov-97	5.1%	8.8%	-5.1%	11.2%	4.2%	12.0%	9.7%	6.2%	-1.6%	0.8%
Dec-97	10.8%	-8.7%	5.8%	-4.5%	-26.1%	4.8%	4.7%	11.8%	12.9%	-9.5%

Monthly Returns in %

Portfolio-Optimization (continued)

- We expand the spreadsheet model to include these ten stocks and the 24 scenarios.
- We want to determine the minimum-risk (i.e., minimum-standarddeviation) portfolio that invests 100% in these stocks and achieves a mean portfolio return of at least 1%. How diversified is this portfolio?
- \circ We assign a probability of 1/24=0.04167% to each scenario.
- The rest of the spreadsheet is as in the previous example.
- Some questions:
 - For each stock, we can calculate the mean and standard deviation of the return in our model:

	SUN	MSFT	GM	IBM	APPLE	P&G	J&J	MERCK	FORD	INTEL
Mean	3.2%	5.0%	1.0%	3.9%	-2.8%	2.9%	2.0%	2.3%	2.3%	4.5%
Stnd. Dev.=	12.8%	9.0%	5.1%	9.3%	13.0%	5.5%	6.7%	7.4%	5.5%	11.4%

Are these accurate reflections of returns in the coming month? How about correlations between the stocks? Are they reflected here?

Optimized Spreadsheet

	A	В	С	D	E F	G	Н	Ι	J	K	L	М	Ν	0	Р
1	TEN-ST	OCKS.XL	S		Investment N	on-Linear I	Program								
2								:	Sum of Por	tfolio Weigł	nts				
3	1			Avg. Portfolio	Portfolio	Portfolio W	/eights x(j)			100%	=	100%			
4	1			Return	Stnd. Dev.	SUN	MSFT	GM	IBM	APPLE	P&G	J&J	MERCK	FORD	INTEL
5	1			1.57%	3.55%	0.0%	0.0%	17.3%	0.0%	12.1%	27.0%	20.5%	0.0%	23.1%	0.0%
6	1			>=											
7	1		Min Return	1.00%	Mean	3.2%	5.0%	1.0%	3.9%	-2.8%	2.9%	2.0%	2.3%	2.3%	4.5%
8					Stnd. Dev.	12.8%	9.0%	5.1%	9.3%	13.0%	5.5%	6.7%	7.4%	5.5%	11.4%
9															
10	Scen-		Proba-	Ret. by	Squared	Scenario r	eturns r(i,j)	by Security							
11	ario	(Date)	bilities	Scenario	Deviation	SUN	MSFT	GM	IBM	APPLE	P&G	J&J	MERCK	FORD	INTEL
12	1	Jan-96	1/24	1.6%	0.000	0.8%	5.4%	-0.5%	18.7%	-13.3%	1.2%	12.3%	6.9%	2.2%	-2.7%
13	2	Feb-96	1/24	-0.3%	0.000	14.1%	6.7%	-2.6%	13.0%	-0.5%	-2.4%	-2.6%	-5.5%	5.9%	6.5%
14	3	Mar-96	1/24	2.3%	0.000	-16.7%	4.5%	3.9%	-9.3%	-10.7%	3.4%	-1.3%	-6.0%	10.0%	-3.3%
15	4	Apr-96	1/24	1.2%	0.000	24.0%	9.8%	1.9%	-3.1%	-0.8%	-0.3%	0.3%	-2.8%	4.4%	19.1%
16	5	May-96	1/24	3.7%	0.000	15.4%	4.9%	1.6%	-0.9%	7.2%	4.0%	5.3%	6.8%	1.7%	11.4%
17	6	Jun-96	1/24	-4.7%	0.004	-6.0%	1.2%	-5.0%	-7.3%	-19.6%	3.1%	1.7%	0.0%	-11.3%	-2.7%
18	7	Jul-96	1/24	-1.8%	0.001	-7.2%	-1.9%	-6.9%	8.6%	4.8%	-1.5%	-3.5%	-0.6%	0.0%	2.3%
19	8	Aug-96	1/24	2.9%	0.000	-0.5%	3.9%	1.8%	6.4%	10.2%	-0.4%	3.1%	2.1%	3.5%	6.2%
20	9	Sep-96	1/24	0.3%	0.000	14.3%	7.7%	-3.3%	8.9%	-8.5%	9.7%	4.1%	7.2%	-6.7%	19.6%
21	10	Oct-96	1/24	2.1%	0.000	-1.8%	4.1%	11.7%	3.6%	3.7%	1.5%	-3.9%	5.0%	0.0%	15.1%
22	11	Nov-96	1/24	7.3%	0.003	-4.5%	14.3%	7.5%	23.5%	4.9%	9.8%	8.1%	12.4%	4.8%	15.5%
23	12	Dec-96	1/24	-4.2%	0.003	-11.8%	5.3%	-3.3%	-4.9%	-13.5%	-1.0%	-6.6%	-4.1%	-1.5%	3.2%
24	13	Jan-97	1/24	3.7%	0.000	23.6%	23.4%	5.8%	3.5%	-20.4%	7.4%	16.1%	13.8%	-0.4%	23.9%
25	14	Feb-97	1/24	0.9%	0.000	-2.8%	-4.4%	-1.9%	-8.4%	-2.3%	3.9%	-0.4%	1.7%	2.3%	-12.6%
26	15	Mar-97	1/24	-3.2%	0.002	-6.5%	-6.0%	-4.3%	-4.5%	12.3%	-4.5%	-8.0%	-8.5%	-4.6%	-1.9%
27	16	Apr-97	1/24	8.2%	0.004	-0.2%	32.5%	4.5%	16.9%	-6.8%	9.6%	15.6%	7.3%	10.8%	10.1%
28	17	May-97	1/24	3.6%	0.000	11.9%	2.1%	-0.9%	7.8%	-2.2%	9.6%	-1.8%	-0.6%	7.9%	-1.1%
29	18	Jun-97	1/24	0.2%	0.000	15.4%	1.9%	-2.8%	4.3%	-14.3%	2.4%	7.3%	13.8%	1.3%	-6.4%
30	19	Jul-97	1/24	7.8%	0.004	22.8%	12.0%	11.0%	17.2%	22.8%	7.7%	-3.5%	1.5%	7.6%	29.5%
31	20	Aug-97	1/24	-0.8%	0.001	5.6%	-6.6%	1.4%	-4.1%	24.3%	-12.5%	-8.8%	-11.6%	5.2%	0.3%
32	21	Sep-97	1/24	3.6%	0.000	-3.0%	0.1%	6.7%	4.6%	-0.3%	3.8%	1.8%	8.9%	4.9%	0.2%
33	22	Oct-97	1/24	-4.6%	0.004	-26.8%	-1.7%	-4.1%	-7.1%	-21.5%	-1.5%	-0.5%	-10.7%	-3.2%	-16.6%
34	23	Nov-97	1/24	4.5%	0.001	5.1%	8.8%	-5.1%	11.2%	4.2%	12.0%	9.7%	6.2%	-1.6%	0.8%
35	24	Dec-97	1/24	3.1%	0.000	10.8%	-8.7%	5.8%	-4.5%	-26.1%	4.8%	4.7%	11.8%	12.9%	-9.5%

Portfolio Optimization Solver Parameters

Solver Parameters	? ×
S <u>e</u> t Target Cell: <u>\$E\$5 </u>	<u>S</u> olve
Equal To: <u>Max</u> Min <u></u> <u>V</u> alue of: 0 By Changing Cells:	Close
\$G\$5:\$P\$5 <u>G</u> uess	
Subject to the Constraints:	Options
\$D\$5 >= \$D\$7 \$K\$3 = \$M\$3	
<u>hange</u>	<u>R</u> eset All
Delete	<u> </u>

The solver parameters dialog box

Portfolio Optimization (continued)

• As can be seen from the optimized spreadsheet, the model suggests to invest in positive quantities in these five stocks:

GM	APPLE	P&G	J& J	FORD
17.35%	12.12%	26.96%	20.46%	23.10%

- It invests nothing in Sun, Microsoft, IBM, Merck or Intel.
- The average portfolio return is: 1.57%.
- The standard deviation (SD) of the portfolio return is: 3.63%.
- o Comments:
 - Apple (which has a negative average return) is still included in the optimal portfolio.
 - The portfolio is reasonably diversified by industry sector (though approximately 40% is in Ford and GM).
 - Our average portfolio return is 1.57%, which is more than the 1% minimum average return we had specified.

The Efficient Frontier

- Suppose we want to vary the minimum mean return (δ) of the portfolio.
- Using SolverTable, we can vary δ and trace out an efficient frontier.
- Consider minimizing SD and varying δ from 0% to 15% in increments of 0.1%. How does the minimal SD vary? What are the optimal

• This graph demonstrates the makeup of the portfolio as δ (the minimum average-portfolio return) is increased from 1.4% to 5%.

Portfolio Optimization (without non-negativity)

- Consider the same optimization problem, but now without the nonnegativity constraints. That is, find the portfolio with the minimum standard deviation of return (SD) that achieves a mean portfolio return of at least 1%.
- Removing the non-negativity constraints allows for *shorting* stocks.
- What is shorting a stock?
 - Assume IBM today sells for \$160/share and in one month its price is \$140/share. During the month, IBM's return was -12.5%.
 - If you buy a share today and sell it one month from now your cash flows are:

<u>Today</u>	A Month From Now
-\$160	+\$140

If you short a share today and "buy" it a month from now, your cash flows are:

<u>Today</u>	A Month From Now
+\$160	-\$140

If you short IBM stock during this month, your return is +12.5%.

Optimized Spreadsheet (without non-negativity)

	A	В	С	D	E F	G	Н	Ι	J	Κ	L	М	Ν	0	Р
1	TEN-STOCKS.XLS Investment Non-Linear Program														
2	1	Sum of Portfolio Weights													
3	1			Avg. Portfolio	Portfolio	Portfolio W	eights x(j)			100%	=	100%			
4	1			Return	Stnd. Dev.	SUN	MSFT	GM	IBM	APPLE	P&G	J&J	MERCK	FORD	INTEL
5				1.00%	3.13%	-6.9%	-28.7%	12.4%	-9.8%	11.9%	41.0%	58.8%	-24.6%	29.8%	16.0%
6	1			>=											
7			Min Return	1.00%	Mean	3.2%	5.0%	1.0%	3.9%	-2.8%	2.9%	2.0%	2.3%	2.3%	4.5%
8	1				Stnd. Dev.	12.8%	9.0%	5.1%	9.3%	13.0%	5.5%	6.7%	7.4%	5.5%	11.4%
9															
10	Scen-		Proba-	Ret. by	Squared	Scenario r	eturns r(i,j)	by Security							
11	ario	(Date)	bilities	Scenario	Deviation	SUN	MSFT	GM	IBM	APPLE	P&G	J&J	MERCK	FORD	INTEL
12	1	Jan-96	1/24	1.1%	0.000	0.8%	5.4%	-0.5%	18.7%	-13.3%	1.2%	12.3%	6.9%	2.2%	-2.7%
13	2	Feb-96	1/24	-2.9%	0.002	14.1%	6.7%	-2.6%	13.0%	-0.5%	-2.4%	-2.6%	-5.5%	5.9%	6.5%
14	3	Mar-96	1/24	4.5%	0.001	-16.7%	4.5%	3.9%	-9.3%	-10.7%	3.4%	-1.3%	-6.0%	10.0%	-3.3%
15	4	Apr-96	1/24	1.1%	0.000	24.0%	9.8%	1.9%	-3.1%	-0.8%	-0.3%	0.3%	-2.8%	4.4%	19.1%
16	5	May-96	1/24	4.1%	0.001	15.4%	4.9%	1.6%	-0.9%	7.2%	4.0%	5.3%	6.8%	1.7%	11.4%
17	6	Jun-96	1/24	-3.7%	0.002	-6.0%	1.2%	-5.0%	-7.3%	-19.6%	3.1%	1.7%	0.0%	-11.3%	-2.7%
18	7	Jul-96	1/24	-2.3%	0.001	-7.2%	-1.9%	-6.9%	8.6%	4.8%	-1.5%	-3.5%	-0.6%	0.0%	2.3%
19	8	Aug-96	1/24	2.9%	0.000	-0.5%	3.9%	1.8%	6.4%	10.2%	-0.4%	3.1%	2.1%	3.5%	6.2%
20	9	Sep-96	1/24	0.2%	0.000	14.3%	7.7%	-3.3%	8.9%	-8.5%	9.7%	4.1%	7.2%	-6.7%	19.6%
21	10	Oct-96	1/24	0.0%	0.000	-1.8%	4.1%	11.7%	3.6%	3.7%	1.5%	-3.9%	5.0%	0.0%	15.1%
22	11	Nov-96	1/24	5.1%	0.002	-4.5%	14.3%	7.5%	23.5%	4.9%	9.8%	8.1%	12.4%	4.8%	15.5%
23	12	Dec-96	1/24	-5.5%	0.004	-11.8%	5.3%	-3.3%	-4.9%	-13.5%	-1.0%	-6.6%	-4.1%	-1.5%	3.2%
24	13	Jan-97	1/24	2.4%	0.000	23.6%	23.4%	5.8%	3.5%	-20.4%	7.4%	16.1%	13.8%	-0.4%	23.9%
25	14	Feb-97	1/24	1.4%	0.000	-2.8%	-4.4%	-1.9%	-8.4%	-2.3%	3.9%	-0.4%	1.7%	2.3%	-12.6%
26	15	Mar-97	1/24	-2.6%	0.001	-6.5%	-6.0%	-4.3%	-4.5%	12.3%	-4.5%	-8.0%	-8.5%	-4.6%	-1.9%
27	16	Apr-97	1/24	4.9%	0.002	-0.2%	32.5%	4.5%	16.9%	-6.8%	9.6%	15.6%	7.3%	10.8%	10.1%
28	1/	May-97	1/24	2.7%	0.000	11.9%	2.1%	-0.9%	7.8%	-2.2%	9.6%	-1.8%	-0.6%	7.9%	-1.1%
29	18	Jun-97	1/24	-2.8%	0.001	15.4%	1.9%	-2.8%	4.3%	-14.3%	2.4%	7.3%	13.8%	1.3%	-6.4%
30	19	Jui-97	1/24	5.1%	0.002	22.8%	12.0%	11.0%	17.2%	22.8%	1.1%	-3.5%	1.5%	7.6%	29.5%
51	20	Aug-97	1/24	-0.8%	0.000	5.6%	-0.6%	1.4%	-4.1%	24.3%	-12.5%	-8.8%	-11.6%	5.2%	0.3%
32		Sep-97	1/24	2.4%	0.000	-3.0%	0.1%	0.7%	4.6%	-0.3%	3.8%	1.8%	8.9%	4.9%	0.2%
33	22	OCI-97	1/24	-1.9%	0.001	-20.8%	-1.7%	-4.1%	-7.1%	-21.5%	-1.5%	-0.5%	-10.7%	-3.2%	-16.6%
34	23	NOV-97	1/24	4.7%	0.001	5.1%	8.8%	-5.1%	11.2%	4.2%	12.0%	9.7%	0.2%	-1.6%	0.8%
55	<u> </u>	Dec-97	1/24	3.9%	0.001	10.8%	-0.1%	5.8%	-4.5%	-20.1%	4.0%	4.1%	11.0%	12.9%	-9.5%

Solver Options Dialog Box									
Solver Options		? ×							
Max <u>Ti</u> me:	100 seconds	ОК							
Iterations:	100	Cancel							
Precision:	0.000001	Load Model							
Tol <u>e</u> rance:	5 %	<u>S</u> ave Model							
Con <u>v</u> ergence:	0.001	<u>H</u> elp							
Assume Linear Model 🔲 Use Automatic Scaling									
Assume Non-Negative Show Iteration <u>R</u> esults									
Estimates	Derivatives	Search							
Tangent	• <u>F</u> orward	• Newton							
O Quadratic	© <u>⊂</u> entral	O C <u>o</u> njugate							

• Note "Assume Linear Model" is not checked in the Solver Options Dialog Box.

Portfolio Optimization (without non-negativity)

- The new optimal portfolio has a standard deviation of 3.19%. This is less than the 3.63% we had before (with the non-negativity).
- The optimal portfolio has an average portfolio return of 1.0%.
- The optimal portfolio is as follows:

	SUN	MSFT	GM	IBM	APPLE
	-6.94%	-28.67%	12.45%	-9.79%	11.94%
▶	P&G	J&J	MERCK	FORD	INTEL
	41.04%	58.77%	-24.63%	29.82%	16.01%

Efficient Frontier (without nonnegativity)

- Using SolverTable, we can vary the δ (the minimum average return) and trace out an efficient frontier when we allow shorting.
- Consider minimizing SD and varying δ from 0% to 15% in increments of 0.1%. How does the efficient frontier with shorting compare to the one

Summary

- Modeling uncertainty with scenarios
- Definitions of reward and risk
- Tradeoff between two conflicting objectives
- Non-linear programming
- The Efficient Frontier

For next class

- Solve the "GMS Stock Hedging" case, pp.330-331 in the W&A text. (Prepare to discuss the case in class, but do not write up a formal solution.)
- Read Chapter 7.3 in the W&A text.