

Lecture 4

- Multiperiod Planning Models
- Cash-Flow-Matching LP
 - Project-funding example
- Summary and Preparation for next class

Multiperiod Planning Models

In many settings we need to plan over a time horizon of many periods because

- decisions for the current planning period affect the future
- o requirements in the future need action now

Examples include:

- Production / inventory planning
- Human resource staffing
- Investment problems
- Capacity expansion / plant location problems

National Steel Corporation

 National Steel Corporation (NSC) produces a special-purpose steel used in the aircraft and aerospace industries. The sales department has received orders for the next four months:

	_Jan	Feb	Mar	Apr
Demand (tons)	2300	2000	3100	3000

 NSC can meet demand by producing the steel, by drawing from its inventory, or a combination of these. Inventory at the beginning of January is zero. Production costs are expected to rise in Feb and Mar. Production and inventory costs are:

	Jan	Feb	Mar	Apr
Production cost	3000	3300	3600	3600
Inventory cost	250	250	250	250

- Production costs are in \$ per ton. Inventory costs are in \$ per ton per month. For example, 1 ton in inventory for 1 month costs \$250; for 2 months, it costs \$500.
- O NSC can produce at most 3000 tons of steel per month. What production plan meets demand at minimum cost?

NSC Production Model Overview

What needs to be decided?

A production plan, i.e., the amount of steel to produce in each of the next 4 months.

O What is the objective?

Minimize the total production and inventory cost. These costs must be calculated from the decision variables.

O What are the constraints?

Demand must be met each month. Constraints to define inventory in each month. Production-capacity constraints. Nonnegativity of the production and inventory quantities.

NSC optimization model in general terms:

min Total Production plus Inventory Cost subject to:

- Production-capacity constraints
- Flow-balance constraints
- Nonnegative production and inventory

NSC Multiperiod Production Model

- Index: Let i = 1, 2, 3, 4 represent the months Jan, Feb, Mar, and Apr, respectively.
- Decision Variables: Let

 P_i = # of tons of steel to produce in month i

 $I_i = \#$ of tons of inventory from month i to i+1

Note: The production variables P_i are the main decision variables, because the inventory levels are determined once the production levels are set. Often the P_i s are called *controllable* decision variables and the I_i s are called *uncontrollable* decision variables.

Objective Function:

The total cost is the sum of production and inventory cost.

Total production cost, *PROD*, is:

$$PROD = 3000 P_1 + 3300 P_2 + 3600 P_3 + 3600 P_4$$
.

Total inventory cost, INV, is:

$$INV = 250 I_1 + 250 I_2 + 250 I_3 + 250 I_4$$
.

Demand Constraints

O In order to meet demand in the first month, we want

$$P_1 \ge 2300.$$

Set

$$I_1 = P_1 - 2300$$

and note that $P_1 \ge 2300$ is equivalent to $I_1 \ge 0$.

 In order to meet demand in the second month, the tons of steel available must be at least 2000:

$$I_1 + P_2 \ge 2000.$$

Set

$$I_2 = I_1 + P_2 - 2000$$

and note that $I_1 + P_2 \ge 2000$ is equivalent to $I_2 \ge 0$.

O The inventory and nonnegativity constraints:

(Month 1)
$$I_1 = P_1 - 2300, I_1 \ge 0$$

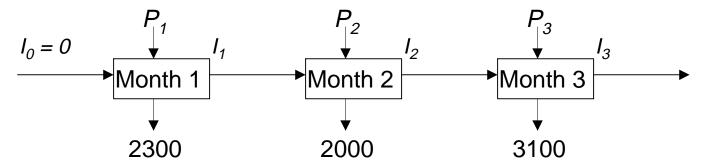
(Month 2)
$$I_2 = I_1 + P_2 - 2000, I_2 \ge 0$$

(Month 3)
$$I_3 = I_2 + P_3 - 3100$$
, $I_3 \ge 0$

define the inventory decision variables and enforce the demand constraints.

NSC Production Model (continued)

 Another way to view the constraints: The inventory variables link one period to the next. The inventory definition constraints can be visualized as "flow balance" constraints:



Flow-balance constraints for each month

Flow in = Flow out

(Month 1)
$$P_1 = I_1 + 2300$$

(Month 2) $I_1 + P_2 = I_2 + 2000$

(Month 3) $I_2 + P_3 = I_3 + 3100$

.

 Are there any other constraints? Production cannot exceed 3000 tons in any month:

$$P_i \le 3000$$
 for $i = 1, 2, 3, 4$.

NSC Linear Programming Model

Min PROD + INV

subject to:

O Cost Definitions:

(Month 4)

(PROD Def.) PROD =
$$3000 P_1 + 3300 P_2 + 3600 P_3 + 3600 P_4$$
.
(INV Def.) INV = $250 I_1 + 250 I_2 + 250 I_3 + 250 I_4$.

Production-capacity constraints:

$$P_i \le 3000, i = 1, 2, 3, 4.$$

 $I_3 + P_4 = I_4 + 3000$

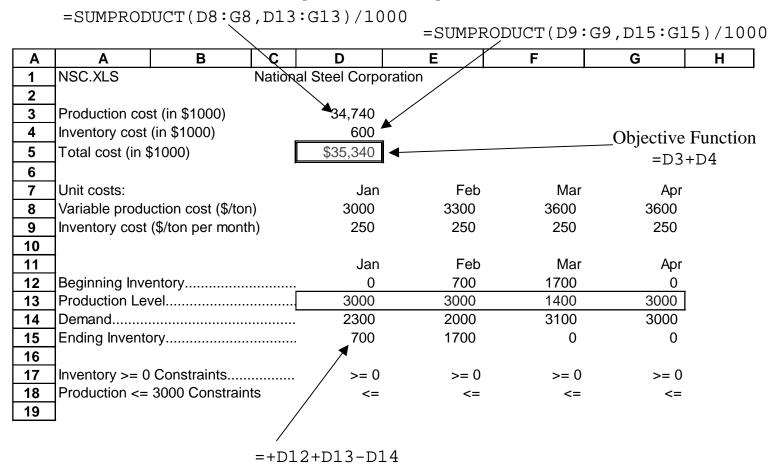
Inventory-balance constraints:

(Flow in = Flow out)
(Month 1)
$$P_1 = I_1 + 2300$$

(Month 2) $I_1 + P_2 = I_2 + 2000$
(Month 3) $I_2 + P_3 = I_3 + 3100$

Nonnegativity: All variables ≥ 0

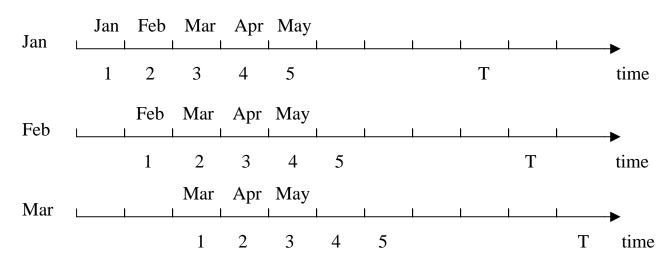
NSC Optimized Spreadsheet



The optimal solution has a total cost of \$35,340,000.

Multiperiod Models in Practice

Most multiperiod planning systems operate on a rolling-horizon basis:



- O A *T*-period model is solved in January and the optimal solution is used to determine the plan for January. In February, a new *T*-period model is solved, incorporating updated forecasts and other new information. The optimal solution is used to determine the plan for February.
- Often long-horizon models are used to estimate needed capacity and determine aggregate planning decisions (*strategic issues*). Then more detailed short-horizon models are used to determine daily and weekly operating decisions (*tactical issues*).

Project-Funding Problem

A company is planning a 3-year renovation of its facilities and would like to finance the project by buying bonds now (in 1999). A management study has estimated the following cash requirements for the project:

	Year 1	Year 2	<u> Year 3</u>
	2000	2001	2002
Cash Requirements (in \$ mil)	20	30	40

The investment committee is considering four government bonds for possible purchase. The price and cash flows of the bonds (in \$) are:

Bond Cash Flows

	Bond 1	Bond 2	Bond 3	Bond 4
1999	-1.04	-1.00	-0.98	-0.92
2000	0.05	0.04	1.00	0.00
2001	0.05	1.04		1.00
2002	1.05			

• What is the least expensive portfolio of bonds whose cash flows equal or exceed the requirements for the project?

Linear-Programming Formulation

Decision Variables: Let

 X_i = # of bond j to purchase today (in millions of bonds)

Objective function:

Minimize the total cost of the bond portfolio (in \$ million):

min 1.04
$$X_1$$
 + 1.00 X_2 + 0.98 X_3 + 0.92 X_4 .

- O Constraints:
 - In each year, the cash flow from the bonds should equal or exceed the project's cash requirements:

Cash flow from bonds ≥ Requirement

This leads to three constraints:

(yr. 2000)
$$0.05 X_1 + 0.04 X_2 + X_3 \ge 20$$

(yr. 2001) $0.05 X_1 + 1.04 X_2 + X_4 \ge 30$
(yr. 2002) $1.05 X_1 \ge 40$

Finally, the nonnegativity constraints:

$$X_j \ge 0$$
, $j = 1, 2, 3, 4$.

In this formulation, what happens to any excess cash in a given year?

Surplus-Cash Modification

- Now suppose that any surplus cash from one year can be carried forward to the next year with 1% interest. How can the LP formulation be modified?
- The surplus cash in year 2000 is:

$$0.05 X_1 + 0.04 X_2 + X_3 - 20$$
.

Multiplying this amount by 1.01 and adding to the cash available in 2001 gives:

$$0.05 X_1 + 1.04 X_2 + X_4 + 1.01(0.05 X_1 + 0.04 X_2 + X_3 - 20) \ge 30$$
.

This can be simplified to

$$0.1005 X_1 + 1.0804 X_2 + 1.01 X_3 + X_4 \ge 50.2$$
.

The surplus cash in 2000 is:

$$0.1005 X_1 + 1.0804 X_2 + 1.01 X_3 + X_4 - 50.2$$
.

This amount could be multiplied by 1.01 and added to the cash available in 2002.

This is getting ugly. Is there a better way?

Surplus-Cash Modification (continued)

- A better way is to define surplus cash variables:
 - C_i = surplus cash in year i, in \$ millions, where i = 1 (2000), 2 (2001), 3 (2002).
- O Constraints:
 - In each year, the cash-balance constraints can be written as:

Cash in = Cash out

or, in more detail,

Cash from bonds + Surplus cash from previous year

- = Requirement + Cash for next year
- This leads to three constraints:

(yr. 2000)
$$0.05 X_1 + 0.04 X_2 + X_3 = 20 + C_1$$

(yr. 2001) $0.05 X_1 + 1.04 X_2 + X_4 + 1.01 C_1 = 30 + C_2$
(yr. 2002) $1.05 X_1 + 1.01 C_2 = 40 + C_3$

And, as usual, we add the nonnegativity constraints:

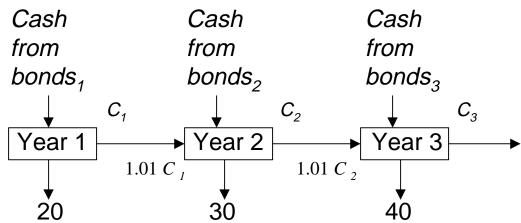
$$C_i \ge 0$$
, $i = 1, 2, 3$.

Project-Funding Linear Program

The complete modified linear program is:

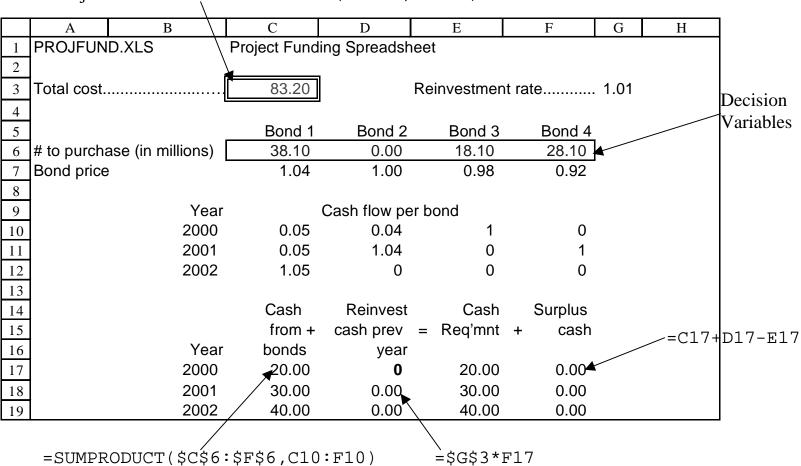
min 1.04
$$X_1$$
 + 1.00 X_2 + 0.98 X_3 + 0.92 X_4 subject to:
(yr. 2000) 0.05 X_1 + 0.04 X_2 + X_3 = 20 + C_1 (yr. 2001) 0.05 X_1 + 1.04 X_2 + X_4 + 1.01 C_1 = 30 + C_2 (yr. 2002) 1.05 X_1 + 1.01 C_2 = 40 + C_3 (Nonneg.) $X_i \ge 0$, $i = 1, 2, 3$.
(Nonneg.) $C_i \ge 0$, $i = 1, 2, 3$.

 The cash constraints can be visualized as "flow-balance equations" at each time period:



Project-Funding Optimized Spreadsheet

Objective Function = SUMPRODUCT(C6:F6,C7:F7)



- Decision variables: Located in cells C6:F6.
- Cell D17 contains the value 0, since there is no surplus cash from the previous year.

Project-Funding Optimal Solution

Bond 1 Bond 2 Bond 3 Bond 4

Bond price: 1.04 1.00 0.98 0.92

Number to purchase (in millions): 38.10 0.00 18.10 28.10

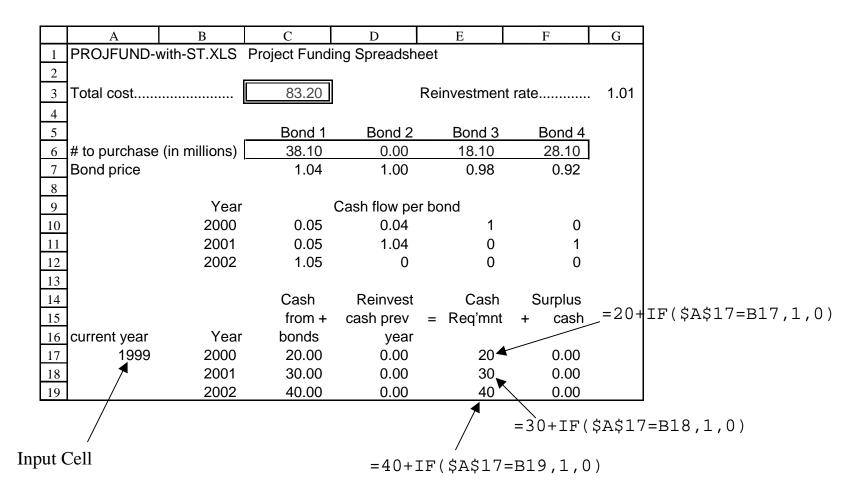
Total cost: \$83.20 million.

Note: $C_i = 0$, for i = 1, 2, 3, i.e., there is no surplus cash in any year.

Determining Discount Rates over Time using SolverTable

- O What is the added cost (today, in 1999) of an increase in \$1 million in the cash requirements a year from now (in 2000)? In 2001? In 2002?
- These are the *discount rates over time*.
- To determine these discount rates, we will need to solve a number of new problems where we increase, one by one, the requirement in each of the years.
- O This can be done in a clever way using SolverTable.

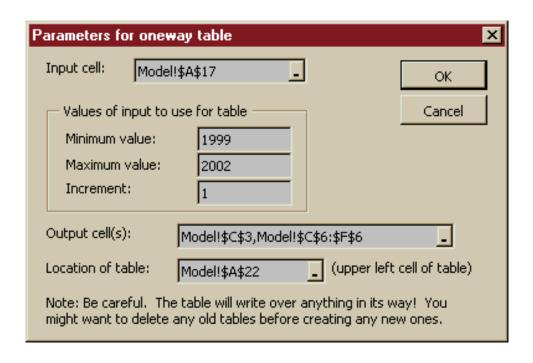
Determining Discount Rates over Time



The trick: The IF() statements will add \$1 to the requirement of the "current year" entered in Input Cell A17.

SolverTable Parameters

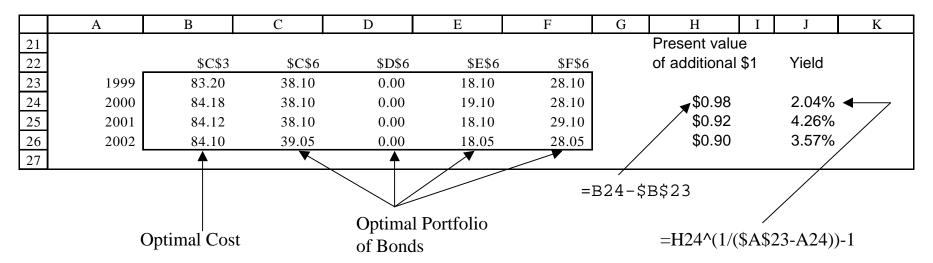
In SolverTable, make a Oneway table. Enter the following parameters:



- The input cell (A17) will vary from 1999 to 2002, in increments of 1 year. We record the total cost and the optimal portfolio of bonds in the space below the current model.
- The IF() statements in E17:E19 will correctly add \$1 to the requirement in the "current year" (entered in input cell A17).

SolverTable Output and Discount Rates

 The output from SolverTable as well as the calculations of the discount rates and the yield are:



• The discount rates over time are:

Present Value

	of additional \$1	Yield
\$1 in year 2000:	\$0.98	2.04%
\$1 in year 2001:	\$0.92	4.26%
\$1 in year 2002:	\$0.90	3.57%

Cash-Flow-Matching Linear Programs

The project funding LP is one example of a *cash-flow-matching LP*, also called an *asset-liability-matching LP*. The bonds purchased are *assets* and the project requirements are *liabilities*. The cash-flow-matching linear program is one approach to problems in *asset-liability management*. Related applications are:

- Pension planning
 - Pension-fund assets are short term
 - Pension liabilities are long term
 - ▶ Determine the least-cost portfolio of bonds purchased today that can guarantee funding of future liabilities
- Municipal-bond issuance
 - ▶ Bonds issued are liabilities (long term)
 - Cash is raised today (short term)
 - Determine the maximum amount of funds that can be raised today given forecasts of future tax collections

Cash-Flow-Matching LPs (continued)

- Yield-curve estimation
 - Can generate discount factors over time
- Corporate debt defeasance
 - Bonds purchased today can be used to remove long-term liabilities from corporate balance sheets
- Cash-flow-matching LPs have been used on Wall Street to buy and sell (issue) trillions of dollars of government, corporate, and municipal bonds.

For next class

- O Read Chapter 5.1 and 5.5 in the W&A text.
- Read and think about the "Foreign Currency Trading" case, p.146 in the W&A text. (Prepare to discuss the case in class, but do not write up a formal solution.)