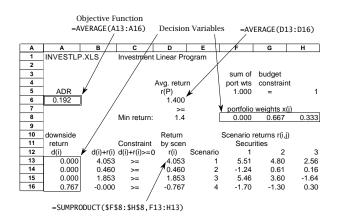

Decision Models: Lecture 7 2

Portfolio Optimization Model

Decision Models

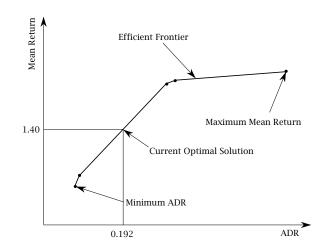


Lecture 7

- Portfolio Optimization II
- GMS Stock Hedging
- Introduction to Retailer Simulation
- Summary and Preparation for next class

Note: Please bring your notebook computer to the next class (lecture 8).

Spreadsheet Solution


For δ = 1.4, the optimal solution is:

$x_1 = 0.000$	$x_2 = 0.667$	$x_3 = 0.333$	
$r_1 = 4.053$	$r_2 = 0.460$	$r_{3} = 1.853$	$r_4 = -0.767$
$d_1 = 0.000$	$d_2 = 0.000$	$d_3 = 0.000$	$d_4 = 0.767$

with ADR = 0.192 and $r_P = 1.400$ (all returns expressed in percent).

Efficient Frontier

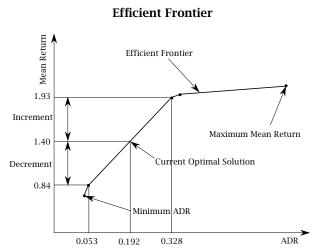
As δ is varied, the optimal solutions to the LP trace out the *efficient frontier*.

Sensitivity Analysis

If δ is increased from 1.4 to 1.5, i.e., if the required minimum average portfolio return is increased, what will the new *ADR* be? Answer: Check the dual price of the "Min. r_{P} " constraint.

The dual price of this constraint is 0.253. Recall that

Dual price
$$= \frac{\Delta ADR}{\Delta r_p}$$


The change in *ADR* is

$$\Delta ADR = \text{Dual Price } \times \Delta r_p$$
$$= 0.253 \times 0.1 = 0.0253.$$

So for $\delta = 1.5$, the minimum *ADR* is

New
$$ADR$$
 = Original ADR + $\triangle ADR$
= 0.192 + 0.025 = 0.217.

The dual price of the "Min. r_p " constraint gives information about the slope of the efficient frontier. Because of the way efficient frontiers are typically graphed (with r_p on the vertical axis and *ADR* on the horizontal axis), the dual price gives the inverse of the slope of the efficient frontier.

Righthand Side Ranges

The breakpoints of the efficient frontier are given by the "Increment" and "Decrement" values for the "Min. r_p " constraint. For $\delta = 1.4$, the dual price is 0.253, the "increment" is 0.53 and the "decrement" is 0.56. Hence, the breakpoints on the efficient frontier occur at $(ADR, r_p) = (0.328, 1.93)$ and $(ADR, r_p) = (0.053, 0.84)$.

Decision Models: Lecture 7 7

Spreadsheet Solution and Sensitivity Report

	A	A	В	С	D	E	F	G	н
	1	INVESTL	P.XLS	Investment	Linear Pro	ogram			
	2								
	3						sum	of budget	
	4				Avg. returr	n	port w	vts constrair	nt
	5	ADR	_		r(P)		1.0	= 00	1
	6	0.192			1.400				
	7				>=		portfo	olio weights x	(j)
	8			Min return:	1.4		0.0	00 0.667	0.333
	9								
	10	downside			Return		Scenar	io returns r(i,)
	11	return		Constraint	by scen		Se	curities	
	12	d(i)	d(i)+r(i)	d(i)+r(i)>=0	r(i)	Scenario		1 2	3
	13	0.000	4.053	>=	4.053	1	5.	51 4.80	2.56
	14	0.000	0.460	>=	0.460	2	-1.3	24 0.61	0.16
	15	0.000	1.853	>=	1.853	3	5.	46 3.60	-1.64
	16	0.767	-0.000	>=	-0.767	4	-1.	70 -1.30	0.30
Cł	nanging	Cells							
	55								
				Fin	al Reduc	ed Obie	ctive	Allowable	Allowable
	Cell		Name	Fin Val		,-	ctive icient	Allowable Increase	Allowable Decrease
	Cell \$F\$8	Min return:			ue Cos	t Coeff			
		Min return: Min return:		Val	ue Cost	t Coeff 80	icient	Increase	Decrease
	\$F\$8		portfolio we	Val ights x(j) 0.00	ue Cost 00 0.0 67 0.0	t Coeff 80 00	icient 0	Increase 1E+30	Decrease 0.079778831
	\$F\$8 \$G\$8	Min return:	portfolio we	Val ights x(j) 0.00 0.66	ue Cost 00 0.0 67 0.0 33 0.0	t Coeff 80 00 00	icient 0 0	Increase 1E+30 0.07593985	Decrease 0.079778831 0.4 1.578125
	\$F\$8 \$G\$8 \$H\$8	Min return: Min return:	portfolio we	Val ights x(j) 0.00 0.66 0.33	ue Cost 00 0.0 67 0.0 33 0.0 00 0.2	t Coeff 80 00 00 50	0 0 0	Increase 1E+30 0.07593985 0.4	Decrease 0.079778831 0.4
	\$F\$8 \$G\$8 \$H\$8 \$A\$13	Min return: Min return: d(i)	portfolio we	Val ights x(j; 0.00 0.66 0.33 0.00	ue Cost 00 0.0 67 0.0 33 0.0 00 0.2 00 0.2	t Coeff 80 00 50 50	0 0 0 0.25	Increase 1E+30 0.07593985 0.4 1E+30	Decrease 0.079778831 0.4 1.578125 0.25
	\$F\$8 \$G\$8 \$H\$8 \$A\$13 \$A\$14	Min return: Min return: d(i) d(i)	portfolio we	Val ights x(j; 0.00 0.66 0.33 0.00 0.00	ue Cost 00 0.0 67 0.0 33 0.0 00 0.2 00 0.2 00 0.2	t Coeff 80 00 50 50 50 50	0 0 0.25 0.25	Increase 1E+30 0.07593985 0.4 1E+30 1E+30	Decrease 0.079778831 0.4 1.578125 0.25 0.25
	\$F\$8 \$G\$8 \$H\$8 \$A\$13 \$A\$14 \$A\$15 \$A\$16	Min return: Min return: d(i) d(i) d(i) d(i)	portfolio we	Val ights x(j) 0.00 0.60 0.33 0.00 0.00 0.00	ue Cost 00 0.0 67 0.0 33 0.0 00 0.2 00 0.2 00 0.2	t Coeff 80 00 50 50 50 50	icient 0 0 0.25 0.25 0.25	Increase 1E+30 0.07593985 0.4 1E+30 1E+30 1E+30 1E+30	Decrease 0.079778831 0.4 1.578125 0.25 0.25 0.25 0.25
Co	\$F\$8 \$G\$8 \$H\$8 \$A\$13 \$A\$14 \$A\$15	Min return: Min return: d(i) d(i) d(i) d(i)	portfolio we	Val ights x(j) 0.00 0.66 0.33 0.00 0.00 0.01 0.01	ue Cos 00 0.0 67 0.0 33 0.0 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2	t Coeff 80 00 50 50 50 50 00	icient 0 0 0.25 0.25 0.25 0.25	Increase 1E+30 0.07593985 0.4 1E+30 1E+30 1E+30 1E+30	Decrease 0.079778831 0.4 1.578125 0.25 0.25 0.25 0.25
Co	\$F\$8 \$G\$8 \$H\$8 \$A\$13 \$A\$14 \$A\$15 \$A\$16	Min return: Min return: d(i) d(i) d(i) d(i)	portfolio we	Val ights x(j) 0.00 0.66 0.33 0.00 0.00 0.00 0.70 Fin	ue Cos: 00 0.0 67 0.0 33 0.0 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 67 0.0 al Shado	t Coeff 80 00 50 50 50 50 00 00	icient 0 0 0.25 0.25 0.25 0.25 traint	Increase 1E+30 0.07593985 0.4 1E+30 1E+30 1E+30 1E+30	Decrease 0.079778831 0.4 1.578125 0.25 0.25 0.25 0.25
Co	\$F\$8 \$G\$8 \$H\$8 \$A\$13 \$A\$14 \$A\$15 \$A\$16 onstraint Cell	Min return: Min return: d(i) d(i) d(i) d(i) ts	portfolio we	Val ights x(j) 0.00 0.66 0.33 0.00 0.00 0.01 0.01	ue Cos: 00 0.0 57 0.0 33 0.0 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 67 0.0 al Shado	t Coeff 80 00 50 50 50 50 00 00	icient 0 0 0.25 0.25 0.25 0.25	Increase 1E+30 0.07593985 0.4 1E+30 1E+30 1E+30 1E+30	Decrease 0.079778831 0.4 1.578125 0.25 0.25 0.25 0.25
Co	\$F\$8 \$G\$8 \$H\$8 \$A\$13 \$A\$14 \$A\$15 \$A\$16 onstraint Cell \$B\$13	Min return: Min return: d(i) d(i) d(i) d(i) ts d(i)+r(i)	portfolio we constraint	Val ights x(j) 0.00 0.66 0.03 0.00 0.00 0.00 0.00 0.70 Fin Val 4.00	ue Cost 00 0.0 67 0.0 33 0.0 00 0.2 00 0.2 00 0.2 00 0.2 67 0.0 al Shado 53 0.0	t Coeff 80 00 50 50 50 50 00 00 00 00 00 00 00 00	icient 0 0 0.25 0.25 0.25 0.25 traint Side 0	Increase 1E+30 0.07593985 0.4 1E+30 1E+30 1E+30 1E+30 Allowable	Decrease 0.079778831 0.44 1.578125 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.
Co	\$F\$8 \$G\$8 \$H\$8 \$A\$13 \$A\$14 \$A\$15 \$A\$16 onstraint Cell \$B\$13	Min return: Min return: d(i) d(i) d(i) d(i) ts	portfolio we constraint	Val ights x(j) 0.00 0.66 0.33 0.00 0.00 0.00 0.70 Fin Val	ue Cost 00 0.0 67 0.0 33 0.0 00 0.2 00 0.2 00 0.2 00 0.2 67 0.0 al Shado 53 0.0	t Coeff 80 00 50 50 50 50 00 00 00 00 00 00 00 00	icient 0 0 0.25 0.25 0.25 0.25 traint Side 0 0 0	Increase 1E+30 0.07593985 0.4 1E+30 1E+30 1E+30 1E+30 Allowable Increase 4.053333333 0.46	Decrease 0.079778831 0.4 1.578125 0.25
Co	\$F\$8 \$G\$8 \$H\$8 \$A\$13 \$A\$14 \$A\$15 \$A\$16 onstrain Cell \$B\$13 \$B\$14	Min return: Min return: d(i) d(i) d(i) d(i) ts d(i)+r(i)	portfolio we constraint	Val ights x(j) 0.00 0.66 0.03 0.00 0.00 0.00 0.00 0.70 Fin Val 4.00	ue Cost 00 0.0 67 0.0 33 0.0 00 0.2 00 0.0 53 0.0 60 0.0	t Coeff 80 00 50 50 50 50 50 50 50 50 50 50 50 50	icient 0 0 0.25 0.25 0.25 0.25 traint Side 0 0 0	Increase 1E+30 0.07593985 0.4 1E+30 1E+30 1E+30 1E+30 Allowable Increase 4.053333333	Decrease 0.079778831 0.4 1.578125 0.25
Co	\$F\$8 \$G\$8 \$A\$13 \$A\$14 \$A\$15 \$A\$16 onstrain Cell \$B\$13 \$B\$14 \$B\$15	Min return: Min return: d(i) d(i) d(i) d(i) ts d(i)+r(i) d(i)+r(i)	portfolio we constraint	Val ights x(j) 0.00 0.61 0.03 0.00 0.00 0.00 0.70 Fin Val 4.00 0.44	ue Cosi 00 0.0 67 0.0 33 0.0 000 0.2 000 0.2 000 0.2 000 0.2 000 0.2 67 0.0 63 0.0 53 0.0 53 0.0	t Coeff 80 00 00 50 50 50 50 00 00 00 00 00 00 00	icient 0 0 0.25 0.25 0.25 0.25 traint Side 0 0 0	Increase 1E+30 0.07593985 0.4 1E+30 1E+30 1E+30 1E+30 Allowable Increase 4.053333333 0.46	Decrease 0.079778831 0.4 1.578125 0.25 0.25 0.25 0.25 0.25 0.25
Co	\$F\$8 \$G\$8 \$A\$13 \$A\$14 \$A\$15 \$A\$16 onstrain Cell \$B\$13 \$B\$14 \$B\$15	Min return: Min return: d(i) d(i) d(i) d(i) ts d(i)+r(i) d(i)+r(i)	Name	Val ights x(j) 0.00 0.60 0.03 0.00 0.00 0.00 0.00 0.00	ue Cosi 00 0.0 37 0.0 33 0.0 00 0.2 00 0.2 37 0.0 38 0.0 00 0.2 37 0.0 38 0.0 39 0.0 30 0.2 30 0.2 30 0.0 33 0.0 33 0.0 30 0.0 33 0.0 30 0.0 30 0.0 33 0.0 33 0.0 33 0.0 00 0.2	t Coeff 80 00 50 50 50 50 50 50 50 50 00 0	icient 0 0 0.25 0.25 0.25 0.25 traint Side 0 0 0 0 0 0 0	Increase 1E+30 0.07593985 0.4 1E+30 1E+30 1E+30 1E+30 1E+30 0.1E+30 0.46 1.85333333 0.46 1.85333333	Decrease 0.079778831 0.4 1.578125 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.
Co	\$F\$8 \$G\$8 \$H\$8 \$A\$13 \$A\$14 \$A\$15 \$A\$16 onstraint Cell \$B\$13 \$B\$14 \$B\$15 \$B\$16	Min return: Min return: d(i) d(i) d(i) d(i) ts d(i)+r(i) d(i)+r(i) d(i)+r(i) d(i)+r(i)	Name	Val ights x(j) 0.00 0.6i 0.03 0.00 0.00 0.00 0.77 Val 4.00 0.44 1.88 0.00	ue Cosi 00 0.0 67 0.0 33 0.0 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 00 0.2 60 0.0 60 0.0 00 0.2 00 0.2 00 0.2 00 -0.1	t Coeff 80 00 50 50 50 50 50 00 50 00 00 00 50 62	icient 0 0 0.25 0.25 0.25 0.25 traint Side 0 0 0 0 0 0 0	Increase 1E+30 0.07593985 0.4 1E+30 1E+30 1E+30 1E+30 1E+30 1E+30 1E+30 1.85333333 1E+30	Decrease 0.079778831 0.4 1.578125 0.25

The report shows the dual (shadow) price of the "Min. r_{p} " constraint in the row \$D\$6. The dual price is 0.253, the increment is 0.528 and the decrement is 0.560.

Decision Models: Lecture 7 8

GMS Stock Hedging

- Gold mining stock (GMS) is identified as an attractive investment
 - \rightarrow New mining equipment
 - \rightarrow New land mining rights
 - → Gold is a safe haven if there is a global monetary crisis
 - \rightarrow Supply and demand favor gold price increase
- Potential problem areas
 - \rightarrow GMS is a highly leveraged company
 - \rightarrow Investment in GMS alone is highly risky
 - $\rightarrow\,$ Gold prices are not sure to rise
 - $\rightarrow\,$ LionFund is a conservative risk-averse fund

How to participate in the upside potential of GMS stock without incurring the risk of this investment?

GMS Stock Hedging

Table 1. Scenarios and Probabilitiesfor GMS Stock in One Month

Scenario	1	2	3	4	5	6	7
Probability	0.05	0.10	0.20	0.30	0.20	0.10	0.05
GMS Price	150	130	110	100	90	80	70

Table 2. Put Option Prices (Today)

Put option	А	В	С
Strike price	90	100	110
Option price	\$2.20	\$6.40	\$12.50

Problem: What is the minimum risk (i.e., minimum standard deviation) portfolio that invests all \$10 million in stock and options?

We first need to compute the returns of each security in each of the scenarios.

Scenario Returns

Suppose scenario 7 occurs. What is the return of GMS stock? What is the return of put option C?

If there are no intermediate cash flows, the return of a security is

 $Return = \frac{Final \ price - Initial \ price}{Initial \ price}.$

For GMS stock in scenario 7, this gives

$$-30\% = \frac{70 - 100}{100}.$$

The final value of a put option is given by

$$\max(K-S,0),$$

where S is the stock price at the option expiration and K is the option strike price.

For put option C, its final value in scenario 7 is

 $40 = \max(110 - 70, 0).$

Hence, the return of put option C if scenario 7 occurs is

$$220.0\% = \frac{40 - 12.50}{12.50}.$$

Decision Models: Lecture 7 12

Scenario Returns (continued)

В	F		G		н		I	J		
4			Go		Ρι		Put			
5						ption A Option B Option C				
6	Initial P	rice	10	00	2.2	0	6.40	12.85		
7	_									
8	Option	strike	e price	Э	9	0	100	110		
9	-									
10	Table c	of Fina								
11			Go		Ρι		Put			
12	Scena	· -						3 Option C		
13		1	15			0	0	0		
14		2	13			0	0	0		
15		3	11			0	0	0		
16		4	10			0	0	10		
17		5		90 0		10 20	-			
18		6		30	1	10				
19		7	7	0	2	0	30	40		
	(cor	oied			(J\$8-: range			∡ B!J19)		
Α	F	G	;		н		I	J		
10		Scer	nario	ret	urns (ii	n pe	ercent)			
11		Ģ	Sold		Put	·	Put	Put		
12	Scen	St	lock	Op	tion A	Op	tion B	Option C		
13	1	5	50.0	· .	-100.0	·-	100.0			
14	2	3	30.0		-100.0	-	100.0	-100.0		
15	3		0.0		-100.0		100.0			
16	4		0.0		100.0		100.0	-20.0		
17	5	-1	10.0		-100.0		56.2	60.0		
18	6		20.0		354.5		212.5	140.0		
		-			004.0		2.2.0	1 70.0		

100*(B!J19-B!J\$6)/B!J\$6

-30.0

19

7

(copied to the range A!G13:A!J19)

809.1 368.8 220.0

GMS Hedging Spreadsheet Model

					=SUI	=SUMPRODUCT(D13:D19,E13:E19)				
	Objective fu	nctior	ı			/				
	T(SUMPROE			13:E1	9))	/	+16	5*1E7/B!	16	
		1			- //	/		·,, \		
A	A B	/ c	D	E	F	/ G	н	1	J	
1	GOLD.XLS	Gold	Stock Hedgi	ng		sum of	budget	1		
2		1				port wts	constrain	t \		
3		1	Avg. retu	m		1.000	=	1 \		
4	STD	<u>Y</u>	(in percer	nt)				/		
5	7.95	5	1.095				o weights			
6		-				0.849	0.000	0.000	0.151	
7						number o	of units		*	
8						84,913	0	0	120,694	
9										
10			Portfolio				returns (in			
11			return			Gold	Put	Put	Put	
12	(r(i)-av.		r(i)		Scen		Option A		Option C	
13	690.38	3	27.37	0.05	1	50.0	-100.0	-100.0	-100.0	
14	86.35		10.39	0.10	2	30.0	-100.0	-100.0	-100.0	
15	59.14	1	-6.60	0.20	3	10.0	-100.0	-100.0	-100.0	
16	16.91	1	-3.02	0.30	4	0.0	-100.0	-100.0	-20.0	
17	0.29		0.56	0.20	5	-10.0	-100.0	56.2	60.0	
18	9.27		4.14	0.10	6	-20.0	354.5	212.5	140.0	
19	43.85	5	7.72	0.05	7	-30.0	809.1	368.8	220.0	
			7							

=SUMPRODUCT(\$G\$6:\$J\$6,G19:J19)

- The objective is to minimize standard deviation.
- The optimal solution is to have 84.9% of the portfolio in gold stock and 15.1% in put option C.
- With a \$10 million budget, this implies purchasing 84,913 shares of stock and 120,694 C puts.

GMS Hedging without Nonnegativity

А	A B C	D	E	F	G	н	1	J
1	GOLD.XLS Gold	Stock Hedgi	ng		sum of	budget		
2					port wts	constrair	nt	
3		Avg. retur	n		1.000	=	1	
4	STD	(in percer	t)					
5	7.18	1.651			portfoli	o weights		
6					0.830	-0.001	-0.066	0.238
7				-	number o	of units		
8					82,972	(3,797)	(103,844)	190,057
9								
10		Portfolio			Scenario	returns (ir	n percent)	
11		return			Gold	Put	Put	Put
12	(r(i)-av.ret)^2	r(i)	Prob	Scen	Stock	Option A	Option B	Option C
13	520.17	24.46	0.05	1	50.0	-100.0	-100.0	-100.0
14	38.60	7.86	0.10	2	30.0	-100.0	-100.0	-100.0
15	107.78	-8.73	0.20	3	10.0	-100.0	-100.0	-100.0
16	0.11	1.98	0.30	4	0.0	-100.0	-100.0	-20.0
17	0.42	2.30	0.20	5	-10.0	-100.0	56.2	60.0
	0.35	2.25	0.10	6	-20.0	354.5	212.5	140.0
18	0.55	2.20						

- The nonnegativity constraint on portfolio weights is removed to allow short sales.
- The objective is to minimize standard deviation.
- The optimal solution is to have 83.0% of the portfolio in gold stock, short 0.1% of put A, short 6.6% of put B, and have 23.8% in put C.
- With a \$10 million budget, this implies purchasing 82,972 shares of stock, shorting 3,797 A puts, shorting 103,844 B puts, and purchasing 190,057 C puts.

A	A	В	С	D	E	F	G	н	1	J
1	GOLD.)	KLS	Gold St	ock Hedgi	ng		sum of	budget		
2							port wts	constrair	nt	
3				Avg. retur	'n		1.000	=	1	
4	ADR			(in percer	nt)					
5	1.10]		1.509			portfoli	o weights		
6		-					0.859	-0.000	-0.035	0.176
7							number of	of units		
8							85,903	(0)	(55,066)	140,969
9										
•										
10	downsid	le		Portfolio			Scenario	returns (i	n percent)	
	downsic return	le	d(i)+r(i)	Portfolio return			Scenario Gold	returns (i Put	n percent) Put	Put
10		de d(i)+r(i)			Prob	Scen	Gold	Put		
10 11	return	d(i)+r(i)	d(i)+r(i)	return	Prob 0.05	Scen 1	Gold	Put	Put Option B	
10 11 12	return d(i)	d(i)+r(i)	d(i)+r(i) >= 0?	return r(i)			Gold Stock	Put Option A	Put Option B -100.0	Option C
10 11 12 13	return d(i) 0.00	d(i)+r(i) 28.85	d(i)+r(i) >= 0? >= 0	return r(i) 28.85	0.05	1	Gold Stock 50.0	Put Option A -100.0	Put Option B -100.0 -100.0	Option C -100.0
10 11 12 13 14	return d(i) 0.00 0.00	d(i)+r(i) 28.85 11.67 0.00	d(i)+r(i) >= 0? >= 0 >= 0	return r(i) 28.85 11.67	0.05 0.10	1 2	Gold Stock 50.0 30.0	Put Option A -100.0 -100.0	Put Option B -100.0 -100.0 -100.0	Option C -100.0 -100.0
10 11 12 13 14 15	return d(i) 0.00 0.00 5.51	d(i)+r(i) 28.85 11.67 0.00 -0.00	d(i)+r(i) >= 0? >= 0 >= 0 >= 0	return r(i) 28.85 11.67 -5.51	0.05 0.10 0.20	1 2 3	Gold Stock 50.0 30.0 10.0	Put Option A -100.0 -100.0 -100.0	Put Option B -100.0 -100.0 -100.0	Option C -100.0 -100.0 -100.0
10 11 12 13 14 15 16	return d(i) 0.00 0.00 5.51 0.00	d(i)+r(i) 28.85 11.67 0.00 -0.00 -0.00	d(i)+r(i) >= 0? >= 0 >= 0 >= 0 >= 0	return r(i) 28.85 11.67 -5.51 -0.00	0.05 0.10 0.20 0.30	1 2 3 4	Gold Stock 50.0 30.0 10.0 0.0	Put Option A -100.0 -100.0 -100.0 -100.0	Put Option B -100.0 -100.0 -100.0 -100.0	Option C -100.0 -100.0 -100.0 -20.0

- The nonnegativity constraint on portfolio weights is removed to allow short sales.
- The objective is to minimize ADR.
- The optimal solution is to have 85.9% of the portfolio in gold stock, short 3.5% of put B, and have 17.6% in put C.
- With a \$10 million budget, this implies purchasing 85,903 shares of stock, shorting 55,066 B puts, and purchasing 140,969 C puts.

Comparison of Alternative Solutions

Scenario Returns for Different Portfolios

Scen Prob	$\begin{array}{c}1\\0.05\end{array}$	2 0.10	3 0.20	4 0.30	5 0.20	6 0.10	7 0.05
Port 1	50.0	30.0	10.0	0.0	-10.0	-20.0	-30.0
Port 2	46.8	27.2	7.6	-2.2	-11.9	-11.9	-11.9
Port 3	27.4	13.4	-6.6	-3.0	0.6	4.1	7.7
Port 4	24.5	7.9	-8.7	2.0	2.3	2.3	2.2
Port 5	28.9	11.7	-5.5	0.0	0.0	0.0	0.0

Portfolio 1: 100% in gold stock

- Portfolio 2: 97.8% in stock, 2.2% in put option A (97,847 shares and 97,847 options)
- Portfolio 3: 84.9% in stock, 15.1% in put option C
- Portfolio 4: 83.0% in stock, -0.1% in put A, -6.6% in put B, and 23.8% in put option C
- Portfolio 5: 85.9% in stock, -3.5% in put B, and 17.6% in put option C
- Portfolio 1: avg ret = 2.00%, std = 18.3%, ADR = 5.5% Portfolio 2: avg ret = 1.76%, std = 15.6%, ADR = 4.8% Portfolio 3: avg ret = 1.10%, std = 8.0%, ADR = 2.2% Portfolio 4: avg ret = 1.65%, std = 7.2%, ADR = 1.8% Portfolio 5: avg ret = 1.51%, std = 7.7%, ADR = 1.1%

GMS Hedging Summary

- Portfolio 1: Investment in GMS stock alone
 - \rightarrow This investment is quite risky
 - \rightarrow STD = 18.3%, ADR = 5.5%, potential loss of 30%
- Portfolio 2: Hedging each share of stock with one put option A
 - \rightarrow Reduces risk only slightly
- Portfolio 3: Minimum variance solution with nonnegative portfolio weights
 - \rightarrow Reduces risk significantly
- Portfolio 4: Minimum variance solution with negative portfolio weights allowed
 - → Reduces risk and increase average return compared to portfolio 3
- Portfolio 5: Minimum *ADR* solution with negative portfolio weights allowed
 - → Maximum loss only 5.5%. Better than portfolio 4?

Portfolio Optimization Software

Many companies sell software packages for portfolio optimization. A few examples include:

- BARRA
- Sponsor-Software Systems, Inc.
 - \rightarrow The Asset Allocation Expert (AAE)
- Wilson Associates
 - → Capital Asset Management System (CAMS)
- LaPorte
 - \rightarrow LaPorte Asset Allocation System

Typical features of these systems include:

- Historical databases
- Graphical capabilities
- Reporting capabilities
- Technical support

Typical prices are \$2,000 – \$10,000 for an initial license plus \$1,000 – \$4,000 per year for upgrades and database updates.

Other Applications

This portfolio optimization model is one example of a *scenario LP* or *stochastic LP*. Similar models have been developed for:

- Bond portfolio selection
 - \rightarrow scenarios are future yield curve changes
 - → SEC now regulates S&L's based on minimum capital requirements based on a range of future yield curve scenarios (typically parallel yield curve shifts)
- Corporate risk management
 - \rightarrow scenarios represent corporate risk factors

A model similar to the GMS case was developed last fall by Cort Gwon (Columbia MBA '95):

- LibertyView Capital Management
- Invests in undervalued high yield (junk) bonds
- Spreadsheet optimization model is now used to hedge bond investments using stock and options
- Scenarios developed by the traders

Introduction to Retailer Simulation

Retailer is a simulation exercise that places the user in the role of a manager of a large chain of retail clothing stores. In this setting, yield management boils down to deciding the *timing* and *magnitude* of price reductions.

Background Information:

Fashion Retail Merchandise

- Staple Items
 - → Regularly purchased items, e.g., socks, underwear, T-shirts, etc.
- Fashion Items
 - → Items with a strong fashion component; quick obsolescence
 - → Specific selling seasons, e.g., winter, spring, cruise, holiday
 - → Define the "style" of a store and position it relative to competitors
 - → Demand is highly erratic: "hit" items can sell out in a few weeks, other items ("crawlers" or "dogs") can sell very slowly

Production and Distribution

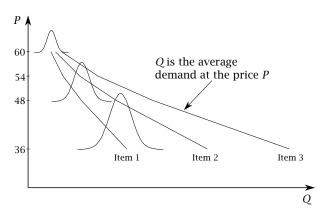
- Garment design
 - \rightarrow Creative process, most important phase
 - \rightarrow Basic silhouettes, colors, and fabrics chosen
 - → Typically begins *one year in advance* of the target selling season
- Production qty decision, material procurement
 - \rightarrow Based on rough forecasts of likely sales
 - → Vagaries of fashion and long lead times often result in highly inaccurate forecasts
 - → Procurement lead time: 1–2 weeks for standard in-stock fabrics to several months for special-order fabrics
- Garment assembly
 - \rightarrow In-house or through subcontractors
 - → Lead time: under 4 weeks (in-house) to several months (e.g., overseas subcontractor)
- \circ Distribution
 - → Takes 1–2 weeks (domestic supplier) to 4–6 weeks (e.g., overseas supplier using container ships for transportation)

Retailer Background

- Procurement and production lead time
 - → Long for fashion items: ranging from many weeks to several months
 - → Fashion items are usually produced in a *single production run*
 - → No opportunity for restocking during a short 8– 15 week selling season.
- Matching supply and demand to maximize revenue
 - → Transfer merchandise between stores
 - \rightarrow Price changes: timing and magnitude decisions
- POS technology
 - \rightarrow Links cash registers to home office computer
 - → Links distribution centers to home office computer
 - → Managers have a "real-time" view of sales and inventory throughout the distribution chain

The GAP - Operating Statement Information

	,	
(\$ Millions) Net Sales Cost of Goods Sold S,G & A Interest Expense Pretax Income Taxes Net Income	1991 \$2,518.0 1,568.0 575.7 3.5 370.8 140.9 229.9	1,955.6 661.3 3.8 339.8 129.1
EPS Shares Out (mil) Sales % Change Comp-Stores	\$1.62 142.0 30.3% 13.0	\$1.47 143.7 17.7% 5.0
% OF SALES Cost of Goods Sold S,G & A Interest Expense Pretax Income Tax Rate	62.3% 22.9 0.1 14.7 38.0	22.3 0.1


Suppose a better markdown strategy produced a 2% revenue increase in 1992:

- \implies \$59 million increase in sales
- \Rightarrow No change in cost of goods sold
- \Rightarrow 17% increase in pretax income and net income
- \implies 17% increase in earnings per share

Relatively small changes in revenue can have a substantial impact on a company's bottom line.

Retailer Parameters

- Stores are stocked with 2,000 units of a single fashion item
 - → Management hopes for strong sales but demand is hard to predict
 - → No chance for restocking the item or reallocating among stores
- Initial price is \$60
- 15 week selling season
- Goal: *maximize the revenue* from the 2,000 units
 - → Production and distribution costs have already been paid; they are sunk costs
- Four allowable price levels
 - → \$60 (full price), \$54 (10% off), \$48 (20% off), \$36 (40% off)
- Management policy: price cannot be raised once it has been cut
- All items in stores that are not sold at the end of 15 weeks are sold to discounters ("jobbers") for \$25 per unit (salvage value)

- There is a different demand curve for each item
- For a given item, demand is random from week to week (even at the same price)
- The demand curve for each item is unknown (i.e., at the beginning of each season, it is not known whether the item is more like Item 1 or Item 3.)

Decision Models: Lecture 7 24

Decision Models: Lecture 7 25

Preliminary Analysis

Problem: How to develop a sensible pricing policy?

Historical Sales Data

- Historical data on 15 previous fashion items is stored in the spreadsheet RETAIL.XLS.
- Each item is different some turned out to be fast sellers while others did not sell so well.
- Although the items were different, their responsiveness to price cuts was quite similar.
- "Deseasonalized" data: the data has been normalized to remove the predictable effects of seasons and holidays on sales figures. (These effects are also removed from the *Retailer* simulation exercise.)
- Sales are quite variable: even at the same price, sales can vary considerably from week to week due to weather, competitors, and a host of other factors.

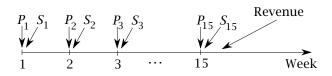
Α	A	В	С	D	E	F							
1	RETAIL.X	LS											
2													
3		Historical s	sales data f	or 15 differ	ent items								
4		for use wit	h the RETA	ILER simu	lation gam	e.							
5	Oby on												
6			Qty on										
7	Item	Week	hand	Price	Sales								
8	1	1	2000	60	57								
9		2	1943	60	98								
10		3	1845	60	55								
11		4	1790	60	41								
12		5	1749	60	60								
13		6	1689	60	39								
14		7	1650	54	106								
15		8	1544	54	55								
16 17		9	1489	54	64								
17		10	1425	54	43								
18		11 12	1382	54 54	131 112								
20		12	1251										
20		13	1139 1077	54 54	62 31								
22		14	1077	54 54	80								
23		16	966	04	00								
23		10	900										
25	2	1	2000	60	115								
26	-	2	1885	60	105								
27		3	1780	60	136								
28		4	1644	60	115								
29		5	1529	60	73								
30		6	1456	60	102								
31		7	1354	54	58								
32		8	1296	54	187								
33		9	1109	54	198								
34		10	911	54	196								
35		11	715	54	132								
36		12	583	54	60								
37		13	523	54	119								
38		14	404	54	131								
39		15	273	54	215								
40		16	58										
41													
42	3	1	2000	60	75								
43		2	1925	60	82								
44		3	1843	60	63								
45		4	1780	60	53								
46		5 6	1727	60	63								
47 48			1664	60	20								
48		7 8	1644	54 54	57 118								
49 50		8	1587	54 54	118								
50		10	1469 1379	54 54	90 51								
52		10	1379	54 54	126								
52		12	1202	54	73								
54		12	1202	54	88								
55		13	1041	54	64								
56		14	977	54	74								
57		16	903	54	/4								
58		10	000										
	L												

Decision Models: Lecture 7 27

Preliminary Analysis (continued)

In your group, analyze the historical data in RETAIL.XLS and try to develop a sensible markdown strategy. In your analysis, you might want to answer:

- What is the average effect on sales of each size price cut? For example, for a price cut from \$60 to \$54, what is the average increase in weekly sales?
- How variable are sales from one item to the next?


In developing a strategy, you might want to consider:

- If demand was not variable, what would be the optimal price cut strategy? For example, suppose the demand at a price of \$60 was a constant 80 items per week. Using your estimated demand sensitivities, to what level and at what point in the selling season would you cut the price?
- How might your strategy be altered to account for uncertainty in demand?

You should work out any desired formulas in advance, so that necessary calculations can be done simply and quickly in class.

Retailer

Retailer is a multiperiod simulation.

 P_i is the price set for week *i* (decision variable) S_i is the sales in week *i* (random).

The *Retailer* simulation will do some calculations automatically.

Retailer Simulation Screen

	Qty on				Cum	Avg	Std	Proj
Week	hand	Price	Sales	Rev	Rev	Sales	Err	Sales
1	2000	60	99	5940	5940	99	-	1485
2	1901							

Columns labeled Week, Qty on hand, Price, and Sales are self-explanatory.

Rev: The revenue for the current week, i.e.,

Rev = Price \times Sales .

Cum Rev: Total (or cumulative) revenue since the beginning of the selling season.

Avg Sales: The average of weekly sales at the current price.

Std Err: Standard error of the average sales, i.e., s/\sqrt{n} where *s* is the std dev of sales and *n* is the number of weeks of sales (at the current price).

Proj Sales: Projected total sales after 15 weeks. The projection is made using cumulative sales thus far plus sales continuing at the current average. For example, $1485 = 99 \times 15$.

Retailer Simulation Screen (continued)

	Qty on				Cum	Avg	Std	Proj
Week	hand	Price	Sales	Rev	Rev	Sales	Err	Sales
1	2000	60	99	5940	5940	99	-	1485
2	1901	60	53	3180	9120	76	23	1140
3	1848							

The user had the choice of four price levels: \$60, \$54, \$48, and \$36. The user chose to maintain the price at \$60.

Cum Rev: \$9120 = 5940 + 3180.

Avg Sales: 76 = (99 + 53) / 2.

Std Err: $23 = s/\sqrt{2}$, where s = 32.5.

Proj Sales: Current total sales + future sales at average rate:

 $1140 = (99 + 53) + 13 \times 76.$

At this point, the user can again choose from 4 price levels: \$60, \$54, \$48, and \$36. The user chose to cut the price to \$54.

Retailer Simulation Screen (continued)

	Qty on		Cum	Avg	Std	Proj		
Week	hand	Price	Sales	Rev	Rev	Sales	Err	Sales
1	2000	60	99	5940	5940	99	-	1485
2	1901	60	53	3180	9120	76	23	1140
3	1848	54	85	4590	13710	85	-	1257
4	1763							

Cum Rev: \$13710 = 5940 + 3180 + 4590.

Avg Sales: 85 (average at the current price of \$54).

Std Err: Undefined, since there is only one week of sales at the current price of \$54.

Proj Sales: Current total sales + future sales at average rate:

 $1257 = (99 + 53 + 85) + 12 \times 85.$

At this point, the user can choose from only 3 price levels: \$54, \$48, and \$36.

At the end of 15 weeks, *revenue from sales will be added to revenue from salvage to determine total revenue.*

Summary

- Linear and nonlinear formulations of the portfolio optimization model
- Interpretation of dual price information
- Interpretation of righthand side range information (e.g., dual price "increment" and "decrement")
- Application to stock hedging using options

For next class

- Quiz is due next lecture. This is an individual assignment.
- Please remember to bring your notebook computer to the next class.
- Read the case "Retailer: A Retail Pricing Simulation Exercise" on pp.529–534 in the W&A text. Download the Retailer files from the course webpage at http://www.columbia.edu/cu/business/courses/. (Please put all of the Retailer-related files into a directory C:\RETAIL on your computer.)
- Optional readings: "His Goal: No Room at the Inns," "Computers as Price Setters Complicate Travelers' Lives," "Making Supply Meet Demand in an Uncertain World," and "Yield Management at American Airlines" in the readings book.