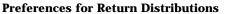
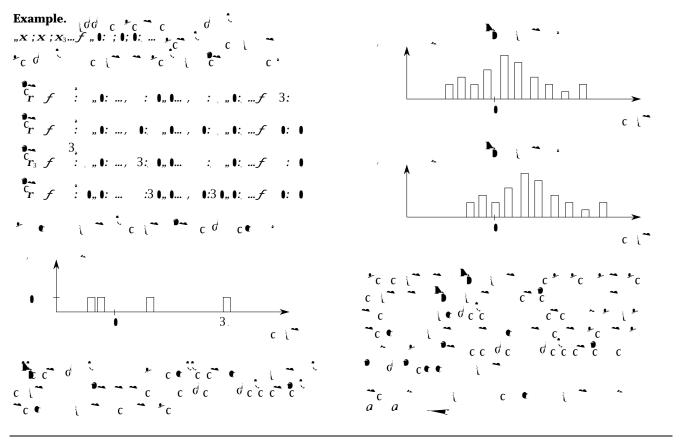
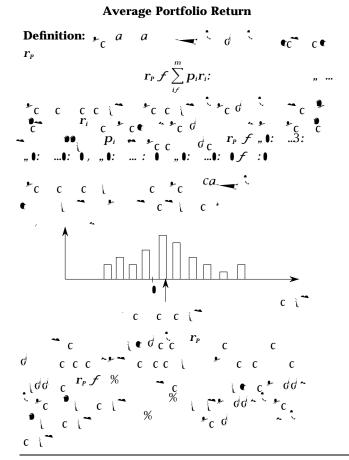
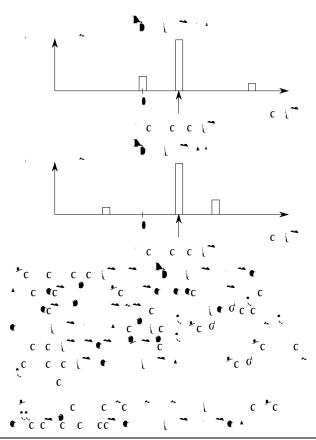

Portfolio Optimization

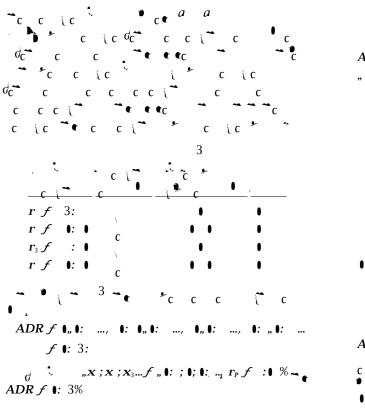
COLUMBIA

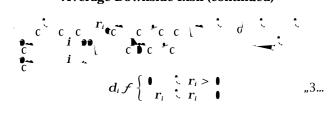

BUSINESS SCHOOL


Problem: a ca free contra Example. dd c - c** •c * $\begin{array}{c} \bullet c & \bullet c & \bullet c & \bullet j f ; \dots; n \\ c & a & a & \bullet c & \bullet c \\ \end{array}$ $x_j f = -i$ (c c c -i c j: $x_j f = -i$ (c -i c -i c j: $x_j x_j x_j x_j \dots f_n = -i$ (1.3; 1: ...) **Definition:** $f_{j,j} = x_j j f$;...; n $\sum_{j,j}^n x_j f = x_j$ k = j f;...; n $\mathbf{c}, \mathbf{x}_j \bullet_{\mathbf{0}} \bullet$




Portfolio Returns (continued)

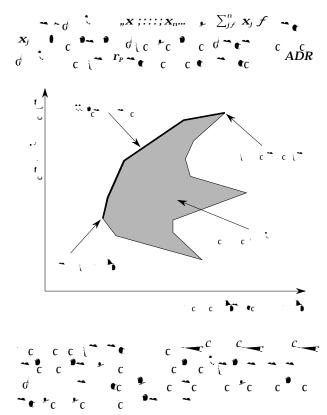

Preferences for Return Distributions (continued)

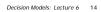

Average Downside Risk (continued)

Average Downside Risk

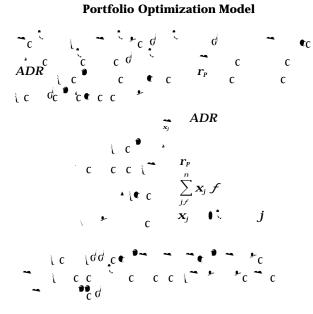
- c dcc a b c c c t 3 ĊĊĊĊ, , 🐛 r f :r ƒ ●: 、 $r_3 f$: С *r f* **1**:3 **1** • • 3 • *ς ς ς ζ ς $ADR \not f | 0, 0: \dots, 0, 0: \dots, : , 0: \dots, 0, 0: \dots$ f ∎: : $d = \frac{1}{2} x; x; x_3 ... f_n \mathbf{0}; \mathbf{0}; ..., r_p f \mathbf{0}:3 \% -$ ADR f 1: % , d . $c \downarrow c \checkmark ADR$ С c (* * * d c€ a t

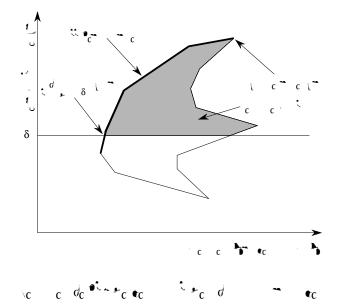
Average Downside Risk (continued)


Definition: $c_{c} a a$

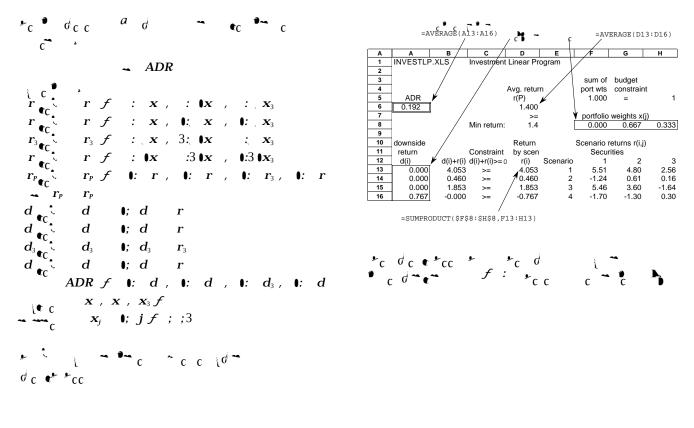

$$ADR \neq \sum_{i \neq i}^{m} p_i d_i: \qquad , \dots$$

$$c \stackrel{p_i}{\longrightarrow} c \stackrel{q_i}{\longrightarrow} c \stackrel{q_i}{\longrightarrow} \frac{q_i}{\longrightarrow} \frac$$

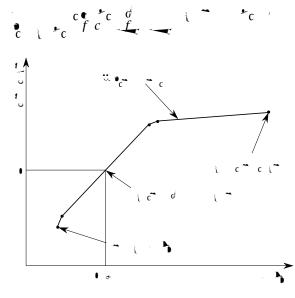

Decision Models: Lecture 6 12


Efficient Frontier

Decision Models: Lecture 6 16


Details of the Optimization Model

<u>,</u> 3 1 **0**~ C 1 1 • • 3 3 3 (•3• • "*x*;*x*;*x*₃..., _C C C C t c d c c с, τς το το το τ $r_{P}f = ,, r, r, r_{3}, r...$ $\mathbf{e}_{\mathsf{C}} \stackrel{\mathsf{r}_{\mathsf{C}}}{\to} \mathbf{c} \qquad \mathbf{c} \qquad \mathbf{d}_{i} \mathcal{F} \left\{ \begin{array}{c} \mathbf{0} \quad \mathbf{0} \quad \mathbf{r}_{i} > \mathbf{0} \\ \mathbf{r}_{i} \quad \mathbf{0} \quad \mathbf{r}_{i} \end{array} \right.$ С • • • c $ADR f = ,, d, d, d_3, d...$


Downside Risk Defined

Mean-ADR Portfolio Optimization Model

Spreadsheet Solution

Optimization Model Results

Incorrect Mean-ADR Formulation

- ADR С r f : x, $: \mathbf{x}$, $: \mathbf{x}_3$ r f : x, $\mathbf{0}: x$, $\mathbf{0}: x_3$ $r_3 f : x, 3$; $tx : x_3$ $r f : \mathbf{x} : :3 \mathbf{x}$, $\mathbf{x}_3 \mathbf{x}_3$ $r_{P} f$ **0**: r, **0**: r, **1**: r_{3} , **1**: r r_P r_P d f, r > 0; r = 1. d c d f, r > 0; 0; r... $d_3 f$, $r_3 > 0$; 0; r_3 ... d ec d f, r > 0; 0; $r \dots$ ADR f \bullet : d, \bullet : d, \bullet : d_3 , \bullet : d \boldsymbol{x} , \boldsymbol{x} , $\boldsymbol{x}_3 \boldsymbol{f}$ i€ c **x**_j **Ⅰ**; **j** *f* ; ;3 a a cic $d_i f$, $r_i > 0$; r_i , r_i . $ff \quad a \quad r_i f$ •c c c ^c dc∙t*cc d ... ί

Mean-ADR and Mean-Variance Analysis Compared

Decision Models: Lecture 6 22

Mean-Variance Optimization Model

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

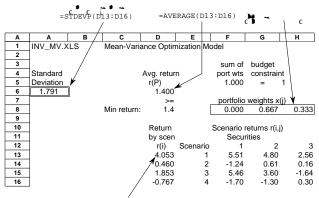
$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

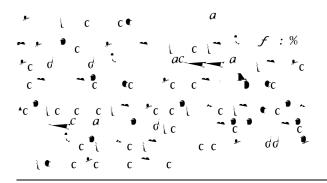
$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

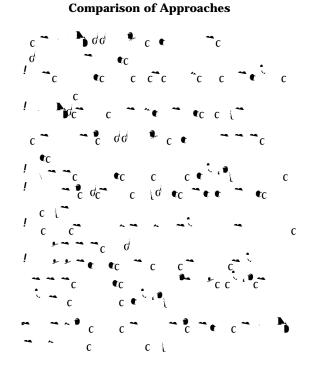
$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

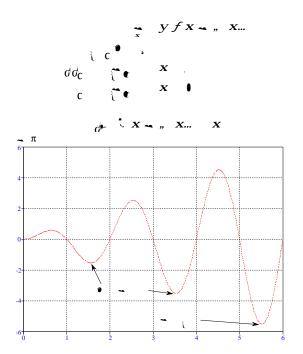

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{3}$$

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{i} \cdot x_{3}$$

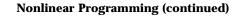

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{i} \cdot x_{i} \cdot x_{i} \cdot x_{i}$$

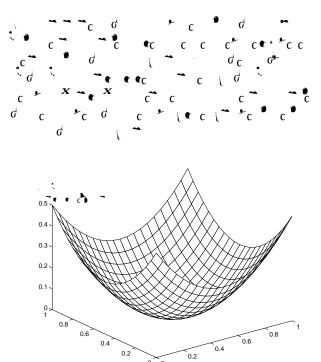

$$r_{c} \cdot r_{f} \cdot x_{,i} \cdot x_{,i} \cdot x_{i} \cdot$$

Mean-Variance Spreadsheet Model



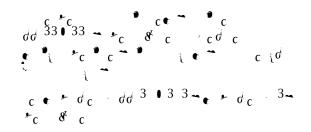
=SUMPRODUCT(\$F\$8:\$H\$8,F13:H13)





Nonlinear Programming

Nonlinear Programming (continued)


0 0

Decision Models: Lecture 6 28

Summary

For next class

