
Decision Models

Lecture 6

� Portfolio Optimization – I

� Summary and Preparation for next class

Decision Models: Lecture 6 2

Portfolio Optimization

Problem: What portfolio to invest in today given an

uncertain future?

This investment problem is often called an asset

allocation or portfolio selection decision. The

assets or securities could include Treasury bonds,

options, mortgage-backed securities, foreign stocks,

real-estate, etc.

Example. Suppose an investor is considering

investing in 3 asset classes:

(1) stocks, (2) bonds, and (3) T-bills.

Suppose the investor has a budget of $2,000,000 and

the investor’s portfolio consists of $1,200,000 in

stocks, $600,000 in bonds, and $200,000 in T-bills.

Index the asset classes by j � 1; : : : ;n. Define the

decision variables

xj � fraction of budget invested in asset class j:

This investor’s portfolio is �x1; x2; x3� � �0:6;0:3;0:1�:
Definition: A portfolio is an allocation xj, j � 1; : : : ;n,

satisfying
∑n

j�1xj � 1 and xj � 0 for j � 1; : : : ;n.

Note: xj � 0 prohibits short sales.
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A Model of the Uncertain Future

Consider a 1-period model with a finite number of fu-

ture scenarios.

Timetoday 1 month
later

p
1

p
2

p
3

p
4

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Make portfolio
decision

Random future
returns

i
p = probability scenario i occurs

Definition: A scenario is a list of returns for the n
securities.
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Scenario Returns and Probabilities

Table. (Monthly returns expressed in percent)

Prob. Security 1 Security 2 Security 3
Scenario 1 0.25 5.51 4.80 2.56

2 0.25 �1.24 0.61 0.16
3 0.25 5.46 3.60 �1.64
4 0.25 �1.70 �1.30 0.30

Let rij denote the return of security j if scenario i
occurs. For example, r32 � 3:60%.

Where do the scenarios come from?

� Historical returns

� Security analysts’ forecasts

� Economic/Financial models

� A combination of the above

Portfolio Returns

If scenario i occurs, what is the return of the portfolio

�x1; : : : ; xn�?

The portfolio return if scenario i occurs, denoted ri, is

ri �
n∑
j�1

rijxj: �1�
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Portfolio Returns (continued)

Example. Suppose the investor’s portfolio is

�x1; x2; x3� � �0:4;0;0:6�. Then, from equation (1),

the portfolio returns in the four scenarios are:

Scenario 1:
r1 � 5:51�0:4� � 4:80�0� � 2:56�0:6� � 3:74

Scenario 2:
r2 � �1:24�0:4� � 0:61�0� � 0:16�0:6� � �0:40

Scenario 3:
r3 � 5:46�0:4� � 3:60�0� � 1:64�0:6� � 1:20

Scenario 4:
r4 � �1:70�0:4� � 1:30�0� � 0:30�0:6� � �0:50

This distribution of returns can be plotted as:

Return0-.5 -.4 1.2 3.7

Probability

0.25

Different portfolios will have different distributions of

returns. How can an investor express a preference for

one distribution over another?
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Preferences for Return Distributions

Distribution 1:

Return0

Probability

Distribution 2:

Return0

Probability

The returns in Distribution 2 are higher than the

returns in Distribution 1. Hence, most rational

investors would prefer 2 to 1. Generally, though,

one distribution will not dominate another in this

way. So how can we express a preference over

complicated distributions?

One way is to summarize a distribution is by its

average return.



Decision Models: Lecture 6 7

Average Portfolio Return

Definition: The average return of a portfolio, denoted

rP , is

rP �
m∑
i�1

piri: �2�

The average return is the return of the portfolio in each

scenario (ri) weighted by the probability that the sce-

nario occurs (pi). In the example, rP � �0:25�3:74 �
�0:25�0:40� �0:25�1:20� �0:25�0:50 � 1:01.

The average summarizes the location of a

distribution with a single number:

Return0

Probability

Average Return

Most investors would prefer rP to be as large as

possible, everything else equal. What else matters?

Suppose rP � 1%. Most investors would be happy

if the actual return was 5%, but unhappy if the

actual return was �5%. Risk is the possibility of low

returns.
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Preferences for Return Distributions (continued)

Distribution A:

Return0

Probability

Average Return

Distribution B:

Return0

Probability

Average Return

The average returns in Distributions A and

B are identical. (The standard deviations are

also identical.) Many investors would prefer

distribution A to B because of the possibility of a

large return and no chance of a loss. For the same

average return, distribution B allows the possibility

of a large loss.

What is a relatively easy way to summarize the

difference between distributions A and B?
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Average Downside Risk

One measure of risk is called average downside risk

(ADR). This measure penalizes returns below 0, i.e.,

it penalizes losses. (Standard deviation, or variance,

is another measure of risk, but this measure

penalizes above average returns as well as below

average returns. Standard deviation is a nonlinear

measure, and we’ll return to this measure shortly.)

(1) (2) (3) (4)

Portfolio Is return If yes, how

return below 0? much below 0? Prob.

r1 � 3:74 No 0 0.25

r2 � �0:40 Yes 0.40 0.25

r3 � 1:20 No 0 0.25

r4 � �0:50 Yes 0.50 0.25

Using columns (3) and (4), the average amount below

0 is:

ADR � 0�0:25�� 0:40�0:25�� 0�0:25�� 0:5�0:25�

� 0:23:

For portfolio �x1; x2; x3� � �0:4;0;0:6�: rP � 1:01% and

ADR � 0:23%.
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Average Downside Risk (continued)

Most investors prefer small ADR, all else equal.

For portfolio �x1; x2; x3� � �0:4;0;0:6�, rP � 1:01% and

ADR � 0:23%. What are rP and ADR for the portfolio

�0;0;1�, i.e., 100% invested in security 3?

(1) (2) (3) (4)

Portfolio Is return If yes, how

return below 0? much below 0? Prob.

r1 � 2:56 No 0 0.25

r2 � 0:16 No 0 0.25

r3 � �1:64 Yes 1.64 0.25

r4 � 0:30 No 0 0.25

Using columns (3) and (4), the average amount below

0 is:

ADR � 0�0:25�� 0�0:25�� 1:64�0:25�� 0�0:25�

� 0:41:

For portfolio �x1; x2; x3� � �0;0;1�: rP � 0:35% and

ADR � 0:41%. This portfolio has smaller average

return and larger risk (as measured by ADR)

compared to the portfolio (0.4, 0, 0.6). Portfolio (0.4,

0, 0.6) dominates portfolio (0, 0, 1).
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Average Downside Risk (continued)

As before, let ri denote the return of a portfolio if

scenario i occurs. Define the downside return for

scenario i by

di �
{

0 if ri > 0,
�ri if ri � 0

�3�

Definition: The average downside risk of a portfolio,

denoted ADR, is

ADR �
m∑
i�1

pidi: �4�

Recall pi is the probability scenario i occurs.

We can now compute rP and ADR for any portfolio.

Investors generally prefer large values for rP and

small values for ADR.
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Efficient Frontier

For any portfolio �x1; : : : ; xn� with
∑n

j�1xj � 1 and

xj � 0, we can compute the corresponding average

portfolio return rP and average downside risk ADR.

Average Downside Risk (ADR)
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Minimum ADR

Efficient Frontier

Maximum Mean Return

Feasible Portfolios

Average return and risk are two conflicting objectives.

Since we can’t have two objective functions in an

optimization model, choose one to be the objective

and the other to be a constraint.
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Portfolio Optimization Model

One formulation of the portfolio optimization model

is: over all feasible portfolios, minimize “risk” (e.g.,

ADR) subject to “reward” (e.g., rP) at least some

user-specified level. That is,

min
xj

ADR

subject to:

(Average return) rP � �

(Budget)
n∑
j�1

xj � 1

(No short sales) xj � 0 for all j

� is a user-supplied constant, indicating the

minimum level of average return that the investor is

willing to accept.
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Portfolio Optimization Model (continued)

Average Downside Risk (ADR)
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Efficient Frontier

Maximum Mean Return

Feasible Portfolios

δ

δ
Optimal Solution
for this

Next we specify the details of the optimization model.
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Details of the Optimization Model

Table. (Monthly returns expressed in percent)

Prob. Security 1 Security 2 Security 3
Scenario 1 0.25 5.51 4.80 2.56

2 0.25 �1.24 0.61 0.16
3 0.25 5.46 3.60 �1.64
4 0.25 �1.70 �1.30 0.30

Given a portfolio �x1; x2; x3� the portfolio returns in

each scenario are:

Scenario 1: r1 � 5:51x1 � 4:80x2 � 2:56x3

Scenario 2: r2 � �1:24x1 � 0:61x2 � 0:16x3

Scenario 3: r3 � 5:46x1 � 3:60x2 � 1:64x3

Scenario 4: r4 � �1:70x1 � 1:30x2 � 0:30x3

Then the average return is

rP � 1=4�r1� r2� r3 � r4�:

To define ADR, let

di �
{

0 if ri > 0,
�ri if ri � 0

and then

ADR � 1=4�d1� d2 � d3 �d4�:
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Downside Risk Defined

We need a way to define di in a spreadsheet model,

where

di �
{

0 if ri > 0,
�ri if ri � 0.

���

We do this with two inequality constraints for each

di:
di � 0 and di � �ri:

For example, suppose r1 � �2. Then the two

constraints are d1 � 0 and d1 � 2. Since we are

trying to minimize ADR, d1 will take on the smallest

value which satisfies the two constraints, namely

d1 � 2.

Suppose instead that r1 � 3. Then the two

constraints are d1 � 0 and d1 � �3. The smallest

value which satisfies the two constraints is d1 � 0.

In both cases, the two constraints above are

equivalent in the optimization model to the

definition of di in ���.

We can now write down the complete mean-ADR
portfolio optimization model.
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Mean-ADR Portfolio Optimization Model

The complete linear optimization model can be

written as:

min ADR
subject to:

(r1 def.) r1 � 5:51x1 � 4:80x2 � 2:56x3

(r2 def.) r2 � �1:24x1 � 0:61x2 � 0:16x3

(r3 def.) r3 � 5:46x1 � 3:60x2 � 1:64x3

(r4 def.) r4 � �1:70x1 � 1:30x2 � 0:30x3

(rP def.) rP � 0:25r1 � 0:25r2 � 0:25r3 � 0:25r4

(Min. rP) rP � �
(d1 def.) d1 � 0; d1 � �r1

(d2 def.) d2 � 0; d2 � �r2

(d3 def.) d3 � 0; d3 � �r3

(d4 def.) d4 � 0; d4 � �r4

(Risk) ADR � 0:25d1 � 0:25d2 � 0:25d3 � 0:25d4

(budget) x1 � x2 �x3 � 1

(nonneg.) xj � 0; j � 1;2;3

This formulation can easily be set up in a

spreadhsheet.
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Spreadsheet Solution

A A B C D E F G H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Investment Linear ProgramINVESTLP.XLS

  budgetsum of
  constraintport wtsAvg. return

1=1.000   r(P)  ADR
1.4000.192

   portfolio weights x(j)>=
0.3330.6670.0001.4Min return:

Scenario returns r(i,j)   Returndownside
       Securities   by scenConstraint  return

321 Scenario   r(i)d(i)+r(i)>=0d(i)+r(i)   d(i)
2.564.805.5114.053>=4.0530.000
0.160.61-1.2420.460>=0.4600.000

-1.643.605.4631.853>=1.8530.000
0.30-1.30-1.704-0.767>=-0.0000.767

Decision Variables
Objective Function

=AVERAGE(A13:A16)

=SUMPRODUCT($F$8:$H$8,F13:H13)

=AVERAGE(D13:D16)

0

The spreadsheet shows the optimal solution

corresponding to � � 1:4 (where � is set in cell D8).
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Optimization Model Results

For � � 1:4, the optimal solution is:

x1 � 0:000 x2 � 0:667 x3 � 0:333
r1 � 4:053 r2 � 0:460 r3 � 1:853 r4 � �0:767
d1 � 0:000 d2 � 0:000 d3 � 0:000 d4 � 0:767

with ADR � 0:192 and rP � 1:400 (all returns

expressed in percent).

As � is varied, the optimal solutions to the LP

trace out the efficient frontier.

ADR

M
ea

n
 R

et
u

rn

Minimum ADR

Efficient Frontier

Maximum Mean Return
1.40

0.192

Current Optimal Solution
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Incorrect Mean-ADR Formulation

min ADR
subject to:

(r1 def.) r1 � 5:51x1 � 4:80x2 � 2:56x3

(r2 def.) r2 � �1:24x1 � 0:61x2 � 0:16x3

(r3 def.) r3 � 5:46x1 � 3:60x2 � 1:64x3

(r4 def.) r4 � �1:70x1 � 1:30x2 � 0:30x3

(rP def.) rP � 0:25r1 � 0:25r2 � 0:25r3 � 0:25r4

(Min. rP) rP � �
(d1 def.) d1 � IF�r1 > 0;0;�r1�
(d2 def.) d2 � IF�r2 > 0;0;�r2�
(d3 def.) d3 � IF�r3 > 0;0;�r3�
(d4 def.) d4 � IF�r4 > 0;0;�r4�
(Risk) ADR � 0:25d1 � 0:25d2 � 0:25d3 � 0:25d4

(budget) x1 � x2 � x3 � 1

(nonneg.) xj � 0; j � 1;2;3

This formulation is a not a linear program because

the constraint which defines di,

di � IF�ri > 0;0;�ri�;

is not linear; it is not differentiable at ri � 0. A

spreadsheet optimizer will give incorrect solutions

with this formulation.
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Mean-ADR and Mean-Variance Analysis Compared

� Variance is a measure of the spread of a

distribution about its mean.

� Mean-ADR and Mean-Variance portfolio analysis

often give similar results

� Results tend to be different when returns are

skewed, i.e., not symmetric. Options, for example,

have skewed return distributions.

The mean-variance (or equivalent mean-standard

deviation) portfolio optimization model is:

min
xj

Standard deviation

of portfolio return

subject to:

(Average return) rP � �

(Budget)
n∑
j�1

xj � 1

(No short sales) xj � 0 for all j
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Mean-Variance Optimization Model

Using the data from the original example, the

complete mean-variance portfolio optimization

model can be written as:

min s
subject to:

(r1 def.) r1 � 5:51x1 � 4:80x2 � 2:56x3

(r2 def.) r2 � �1:24x1 � 0:61x2 � 0:16x3

(r3 def.) r3 � 5:46x1 � 3:60x2 � 1:64x3

(r4 def.) r4 � �1:70x1 � 1:30x2 � 0:30x3

(rP def.) rP � 0:25r1 � 0:25r2 � 0:25r3 � 0:25r4

(Min. rP) rP � �
(Risk) s � STDEVP(r1; r2; r3; r4)

(budget) x1 � x2 � x3 � 1

(nonneg.) xj � 0; j � 1;2;3

This formulation is a not a linear program because

the objective function is a quadratic function. This

formulation can easily be set up in a spreadsheet.
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Mean-Variance Spreadsheet Model

A A B C D E F G H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Mean-Variance Optimization ModelINV_MV.XLS

  budgetsum of
  constraintport wtsAvg. returnStandard

1=1.000   r(P)Deviation
1.4001.791

   portfolio weights x(j)>=
0.3330.6670.0001.4Min return:

Scenario returns r(i,j)   Return
       Securities   by scen

321 Scenario   r(i)
2.564.805.5114.053
0.160.61-1.2420.460

-1.643.605.4631.853
0.30-1.30-1.704-0.767

Decision Variables
Objective Function
=STDEVP(D13:D16)

=SUMPRODUCT($F$8:$H$8,F13:H13)

=AVERAGE(D13:D16)

This must be solved as a nonlinear model.

In this case, with a minimum return of � � 1:4%,

the optimal portfolio is exactly the same using the

mean-variance model or the mean-ADR model.

Because we are using the security returns directly, it

is not necessary to compute a variance-covariance

matrix of security returns. However, that approach

would give the same answer.
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Comparison of Approaches

� Mean-ADR approach leads to a linear

optimization model

! Linear models are generally easier and faster

to solve

! ADR penalizes only downside returns

� Mean-variance approach leads to a nonlinear

model

! Nonlinear models are more difficult to solve

! Variance penalizes upside and downside

returns

! Less sensitivity analysis information available

with nonlinear programs

! Righthand side ranges are not given for

nonlinear models (so tracing the efficient

frontier is more difficult)

� In many cases, mean-variance and mean-ADR

analysis give similar results
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Nonlinear Programming

min
x

y � x sin��x�

subject to:

(Upper bound) x � 6

(Lower bound) x � 0

Graph of x sin��x� vs. x
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Local minima

Global minimum

x sin(πx)
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Nonlinear Programming (continued)

Starting from x � 0: the optimizer converges to
(1) x� � 1:56, y� � �1:53.

Starting from x � 3: the optimizer converges to
(2) x� � 3:53, y� � �3:51.

Starting from x � 5: the optimizer converges to
(3) x� � 5:52, y� � �5:51.

The solution returned by the optimizer depends on

the starting point.

(1) and (2) are local minima of the nonlinear program.

(3) is the global minimum, i.e., it is the true optimal

solution.

In general, optimizers are not guaranteed to give

global optimal solutions to nonlinear programs.
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Nonlinear Programming (continued)

Not all nonlinear programs have local optima. In

fact, mean-variance models are well-behaved: there

are no local optimal solutions. A sample graph

of portfolio standard deviation versus portfolio

weights x1 and x2 is given below. For mean-variance

problems, the optimizer should return the correct

global optimal solution.
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Summary

� Modeling uncertainty with scenarios

� Definitions of reward and risk

� Tradeoff between two conflicting objectives

� Efficient frontier (Pareto optimality)

� Linear and nonlinear formulations of the

portfolio optimization model

For next class

� Solve the “GMS Stock Hedging” case,

pp.330–331 in the W&A text. (Prepare to

discuss the case in class, but do not write up a

formal solution.)

� Read Chapter 6, pp.310–313 and Chapter 7.3 in

the W&A text.


