
Decision Models

Lecture 5

◦ Integer Programming

! Plant location example

◦ Lakefield Corporation’s Oil Trading Desk

! Background Information

! Blending Linear Program

◦ Summary and Preparation for next class
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Integer Programming

Definitions. An integer program is a linear program

where some or all decision variables are constrained

to take on integer values only. A variable is called

integer if it can take on any value in the range

: : :, −3, −2, −1, 0, 1, 2, 3, : : :. A variable is called

binary if it can take on values 0 and 1 only.

What use?

◦ Can’t build 1.37 aircraft carriers

◦ Rounding may not give the best, or even a

feasible answer

Selected Applications

◦ Capital budgeting

! invest all or nothing in a project

◦ Fixed cost/Set-up cost models

◦ Facility location

! build a plant or not (yes/no decision)

◦ Minimum batch size

! if any cars are produced at a plant, then at

least 2,000 must be produced

! C = 0 or C � 2;000 (either/or decision)
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Difficulties in Solving Integer Programs

Example.
max 21X + 11Y

subject to:

(1) 7X + 4Y ⅔ 13

(Nonneg.) X; Y � 0

X

Y

0 1 2 3 4

1

2

3

4

(0,3 / )1
4

6
7(1 / , 0)

Optimal linear programming solution: X = 16=7; Y = 0.

Rounded to X = 2; Y = 0 is infeasible.

Rounded to X = 1; Y = 0 is not optimal.

Optimal integer programming solution: X = 0; Y = 3.
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Plant Location Problem

A new company has won contracts to supply a

product to customers in Central America, United

States, Europe, and South America. The company

has determined three potential locations for plants.

Relevant cost data are given next:

Fixed Variable Production
Plants Cost Cost Capacity

Brazil 50,000 1,000 30

Philippines 40,000 1,200 25

Mexico 60,000 1,600 35

Fixed costs are in $ per month. Fixed costs are

only incurred if the company decides to build

and operate the plant. Variable costs are in $ per

unit. Production capacities are in units per month.

Customer demand (in units per month) is:

Central United South
America States Europe America

Demand 18 15 20 12

In addition to fixed and variable costs, there are

shipping costs.
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Plant Location Problem (continued)

Plant

Brazil

Philippines

Mexico

Central
America

United
States

Europe

18

15

20

Customer

12
South
America

9
9

7
5

7 7

4

6

3 4

7
9

Numbers on arcs represent shipping costs (in $100

per unit).

Which plants and shipping plan minimize monthly

production and distribution costs?
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Plant Location Model

Indices:

Let B represent the Brazil plant, and similarly use

P (Philippines), M (Mexico), C (Central America), U
(United States), E (Europe), and S (South America).

Decision Variables: Let

pB = # of units to produce in Brazil

and similarly define pP and pM. Also let

xB;C = # of units to ship from Brazil to Central Am.,

and define xB;U , xB;E, : : :, xM;S similarly.

Objective Function:

The total cost is the sum of fixed, variable, and

shipping costs. Total variable cost is:

VAR = 1;000pB + 1;200pP + 1;600pM:

Total shipping cost is:

SHIP = 900xB;C + 900xB;U + 700xB;E + 500xB;S
+ 700xP;C + 700xP;U + 400xP;E + 600xP;S
+ 300xM;C + 400xM;U + 700xM;E + 900xM;S

We will return to the total fixed cost computation

shortly.
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Plant Location Model (continued)

Constraints:

Plant production definitions: There are constraints to

define total production at each plant. For example,

the total production at the Mexico plant is:

pM = xM;C + xM;U +xM;E +xM;S:

This can be thought of as a “flow in = flow out”

constraint for the Mexico node.

Demand constraints: There are constraints to ensure

demand is met for each customer. For example, the

constraint for Europe is:

xB;E +xP;E + xM;E � 20:

This is a “flow in � flow out” constraint for the

Europe node.

Plant Capacity Constraints:

Production cannot exceed plant capacity, e.g., for

Brazil

pB ⅔ 30:
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Fixed Cost Computation

Additional Decision Variables: To compute total fixed

cost, define the binary plant open variables:

yB =
{

1 if the Brazil plant is opened (i.e., if pB > 0)
0 if it is not opened (i.e., if pB = 0),

and define yP and yM similarly.

Total fixed cost is:

FIX = 50;000yB + 40;000yP + 60;000yM:

As it currently stands, the optimizer will always

set the “plant open” variables to zero (so that no

fixed cost will be incurred). We need constraints to

enforce the meaning of these variables, e.g.,

pB > 0 =⇒ yB = 1:

Why not add constraints to define the plant open

variables, e.g., for Brazil,

yB=IF(pB > 0;1;0�?

Because =IF statements are not linear and are

discontinuous. Optimizers cannot solve such

problems easily, if at all. What else can be done?



Decision Models: Lecture 5 9

Fixed Cost Computation (continued)

If yB = 0 we want to rule out production at the Brazil

plant. If the Brazil plant is not opened (i.e., if yB = 0)

its “available” capacity is 0. If yB = 1, the plant is

open and its “available” capacity is 30 units per

month.

The plant capacity constraints can be modified to

enforce this meaning of yB:

pB ⅔ 30yB:

If yB = 0 then the constraint becomes pB ⅔ 0.

If yB = 1 then the constraint becomes pB ⅔ 30.

Alternatively, if pB > 0 (and yB can only take on the

values 0 or 1) then yB = 1. This is exactly what is

needed!

Modified Plant Capacity Constraints:

Production cannot exceed plant capacity, e.g., for

Brazil

pB ⅔ 30yB:

Binary variable: yB = 0 or 1:

Similar plant capacity and binary variable constraints

are needed for the Philippines and Mexico.
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Plant Location Integer Programming Model

min VAR+ SHIP + FIX
subject to:
Cost definitions:
(VAR Def.) VAR = 1;000pB + 1;200pP + 1;600pM
(SHIP Def.) SHIP =

900xB;C + 900xB;U + 700xB;E + 500xB;S
+ 700xP;C + 700xP;U + 400xP;E + 600xP;S
+ 300xM;C + 400xM;U + 700xM;E + 900xM;S

(FIX Def.) FIX = 50;000yB + 40;000yP + 60;000yM
Plant production definitions:

(Brazil) pB = xB;C + xB;U +xB;E + xB;S
(Philippines) pP = xP;C +xP;U + xP;E + xP;S

(Mexico) pM = xM;C + xM;U +xM;E +xM;S
Demand constraints:
(Central America) xB;C + xP;C +xM;C � 18

(United States) xB;U +xP;U + xM;U � 15
(Europe) xB;E +xP;E + xM;E � 20

(South America) xB;S +xP;S + xM;S � 12

Modified plant capacity constraints:
(Brazil) pB ⅔ 30yB

(Philippines) pP ⅔ 25yP
(Mexico) pM ⅔ 35yM

Binary variables: yB; yP; yM = 0 or 1

Nonnegativity: All variables � 0
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Plant Location Optimized Spreadsheet

A A B C D E F G H I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Plant Location ModelPLANT.XLS

1,100Fixed costPlantProductionVariableFixed
860Variable costOpenCapacityCostCostPlants
314Shipping cost13010500Brazil

2,274Total cost02512400Philippines
13516600Mexico

(All costs in $100)
CustomersUnit Shipping Costs:

S.Amer.EuropeU.S.Central Am.
5799Brazil
6477Philippines
9743Mexico

ConstraintAvail -AvailableCustomersShipping Plan:
>=0 ?TotalCapacityTotalS.Amer.EuropeU.S.Central Am.
>=0-1E-093030121800Brazil
>=00000000Philippines
>=01.1E-083535021518Mexico

12201518Total
>=>=>=>=Constraint
12201518Demand

=SUMPRODUCT(B5:B7,E5:E7)

=SUMPRODUCT(C5:C7,F17:F19)

=SUMPRODUCT(B11:E13,B17:E19)

@SUM(I3..I5)
Objective Function

+D7*E7

Decision variables in cells E5:E7 are restricted to 0 or

1, i.e., they are constrained to be integer, ⅔ 1 and � 0.

Note that many numbers in the spreadsheet were scaled

to units of $100. For the optimizer to work properly,

it is important (especially with integer programs) to

scale the numbers to be about the same size.

Dual price information is not available with integer

programs; the Excel optimizer does not give answer

reports.
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Plant Location “Optimized” Spreadsheet

using =IF statements

A A B C D E F G H I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Plant Location ModelPLANT_IF.XLS

1500Fixed costPlantProductionVariableFixed
778Variable costOpenCapacityCostCostPlants
349Shipping cost13010500Brazil

2,627Total cost12512400Philippines
13516600Mexico

(All costs in $100)
CustomersUnit Shipping Costs:

S.Amer.EuropeU.S.Central Am.
5799Brazil
6477Philippines
9743Mexico

ConstraintAvail -AvailableCustomersShipping Plan:
>=0 ?TotalCapacityTotalS.Amer.EuropeU.S.Central Am.
>=02.995573027.004120150.0044313Brazil
>=0-4E-13252502005Philippines
>=022.00443512.99600012.995569Mexico

12201518Total
>=>=>=>=Constraint
12201518Demand

=IF(F17>0,1,0)

In this spreadsheet, the plant open cells, E5:E7, are

computed with =IF statements.

The optimizer returns an incorrect optimal solution

because of the =IF statements. This is not an

Excel bug. It is simply a difficult problem for any

optimizer to solve because =IF statements represent

discontinuous functions.



Decision Models: Lecture 5 13

Optimization Applications in the Oil Industry

◦ Refining operations

! Example: Citgo uses linear programming to

improve refining operations. Total benefit:

approximately $70 million in one year.

! Example: Texaco uses a nonlinear

progamming system called OMEGA to

optimize gasoline blending operations.

The result: savings exceeding $30 million

annually.

◦ Speculating and market making in oil markets

! Example: Lakefield Oil (a pseudonym for a

large NY-based oil trading firm) uses linear

programming to exploit inefficiencies in the

oil market.
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Lakefield Corporation’s Oil Trading Desk

◦ Buy oil products for its refining and blending

operations

◦ Sell oil products to customers

◦ Trade in the international oil markets for its

own account

The Current Problem

◦ Prices of various oil products tend to move

together in the long run, but not in the short

run.

◦ Can a decision model be used to exploit

inefficiencies in the oil markets?
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Trading Screen

Price
Fuel ($ per barrel)

1. 1% Sulphur Fuel Oil 16.08
2. 3% Sulphur Fuel Oil 13.25
3. 0.7% Sulphur Fuel Oil 17.33
4. Heating Oil 24.10
5. 1% Sulhpur Vacuum Gas Oil 20.83
6. 2% Sulhpur Vacuum Gas Oil 20.10
7. 0.5% Sulhpur Vacuum Gas Oil 21.46
8. Straight Run (low sulphur) 21.00
9. Straight Run (high sulphur) 20.00

10. Kerosene Jet Fuel 25.52
11. Diesel Fuel 24.30
12. Slurry 11.50

Are there any profitable trading opportunities at

these prices?

To answer this question, it is useful to explore the

factors that affect fuel prices. To this end, some

background about the production process is helpful.
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Separating Crude Oil Fractions

gases

straight run
gasoline

straight run
naptha

straight run
kerosene

light straight
run gas oil

heavy straight
run gas oil

light vacuum
distillates

heavy vacuum
distillates

vacuum residue

Fraction
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crude
oil
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residue

Diesel fuels and
heating oils of
different
viscosities

Low octane
gasoline

Jet fuel

Heavier hydrocarbons
(more carbon atoms)

Further processing (catalytic reforming, cracking) then produces
gasolines.  The more highly processed, the higher the value.
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Price Implications

Crude oil is essentially separated into

(1) gasoline

(2) jet fuel

(3) heating oil

complements in
production
(co-products)

Because cracking can be used to transform some
fuels into others, in reality there is some degree of
substitutability between oil products.  Thus, the price
implications displayed above are not really so clear cut.

price and supply of
gasoline

price of crude oil

supply of crude oil

supply of diesel fuel

price of diesel fuel

What are the implications for the prices
of gasoline and diesel fuel?

Now suppose that the

demand for gasoline
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Heating Oil #2 Unleaded Gasoline
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◦ The prices of oil products tend to move together

over long periods.

◦ However, in late 1989 and early 1990 a severe

cold wave in the Northeast US caused heating oil

to rise 60/c per gallon while gasoline rose just over

10/c per gallon.

◦ There is a seasonal pattern of price changes:

gasoline is relatively cheaper in winter and more

expensive in summer (and the opposite for

heating oil).
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Daily Price Changes
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◦ The correlation of daily price changes is about 0.5.

◦ Prices are somewhat independent in the short run.
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Properties of Fuels

API - American Petroleum Institute gravity

Related to density

Density API

Usually higher API (lower density) is
preferred (energy per unit mass is
higher for low density fuels, which
is preferred where limiting fuel
weight is important)

Viscosity - resistance of a liquid to flow

Measured in centistokes

Lower viscosity is preferred (fuel flows
more easily through fuel lines)
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Properties of Fuels (continued)

Sulphur

Low sulphur is preferred to reduce
corrosion on metal surfaces

Flash point

The lowest temperature for ignition
when exposed to a flame

High flash points are preferred for
safety reasons
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Arbitrage Idea

Fuel 1 Fuel 2 Fuel 3 Fuel 4
Property 1: API a1 a2 a3 a4

Property 2: Viscosity vs1 vs2 vs3 vs4

Property 3: Sulphur s1 s2 s3 s4

Property 4: Flash point fp1 fp2 fp3 fp4

Price ($/barrel) p1 p2 p3 p4

Fuel 2 Fuel 3 Fuel 4

New
Fuel

Suppose that certain amounts of fuels 2, 3, and 4 are

blended to give one barrel of a “new fuel.” The cost of

the new fuel is the sum of the costs of fuels 2, 3, and 4

(plus a small cost for blending). If the cost of the new

fuel is less than the cost of fuel 1 and if the new fuel is

better than fuel 1 in each of the 4 properties, then the

prices are “out of line,” i.e., an arbitrage opportunity

exists. A trader could buy fuels 2, 3, and 4, then blend

them into the new fuel and sell it for the (higher) price

of fuel 1.
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Optimization Idea

Is the price of fuel 1 out of line? To answer this

question, we can try to find the cheapest way to

blend fuels 2, 3, : : :, 12 into a new fuel that is at

least as good as fuel 1.

Decision Variables:

xj = # of barrels of fuel j in the blend, j = 2; : : : ;12

Optimization model for fuel 1:

min Cost of new fuel (i.e., blend)

subject to:

◦
12∑
j=2

xj = 1 (Blend 1 barrel of new fuel)

◦ Property i of new fuel is

at least as good as

Property i of fuel 1, i = 1;2;3;4

If the optimal solution to the optimization model is

a cost p∗ which is less than p1 (the cost of one barrel

of fuel 1), then there is an arbitrage opportunity.
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Properties of Blended Fuel

Some properties of fuels combine linearly while others

do not.

1/2 barrel
1% sulphur

1/2 barrel
3% sulphur

1 barrel
2% sulphur

Sulphur combines (nearly) linearly

1/2 bottle
20 year old Scotch

1/2 bottle
1 day old Scotch

1 bottle
10 year old Scotch

The taste of the combined 1/2 bottles of Scotch
is probably not as good as the bottle of 10 year
old Scotch.   The taste of Scotch does not
combine linearly.

Definition: Suppose cj is a numerical measure of a

property of fuel j and xj barrels of fuel j are blended

together (where
∑n

j=1xj = 1). This property is said to

combine linearly if
n∑
j=1

cjxj

is the measure of the property for the blended fuel.
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Properties of Blended Fuel (continued)

The fuel property API does not combine linearly, but

the related property density does combine linearly

(to a very close approximation). Viscosity does not

combine linearly, but a related measure, called linear

viscosity, does combine linearly.

Fuel 1 Fuel 2 Fuel 3 Fuel 4
Prop. 1: Density 0.996 0.996 0.996 0.855
Prop. 2: Linear Visc. 1.819 1.819 1.819 0.243
Prop. 3: Sulphur 1 3 0.7 0.2
Prop. 4: Linear Flash 204.8 204.8 204.8 260.4
Price ($/barrel) 16.08 13.25 17.33 24.10

Suppose x2 = 0:3, x3 = 0:3, and x4 = 0:4 barrels are

blended. What are the properties of the blended fuel?
Density:

0:996�0:3�+ 0:996�0:3�+ 0:855�0:4� = 0:940

Linear Viscosity:
1:819�0:3�+ 1:819�0:3�+ 0:243�0:4� = 1:189

Sulphur:
3�0:3�+ 0:7�0:3�+ 0:2�0:4� = 1:190

Linear Flash Point:
204:8�0:3�+ 204:8�0:3�+ 260:4�0:4� = 227:0

Price:
13:25�0:3�+ 17:33�0:3�+ 24:10�0:4� = 18:81
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Example Blend

The new fuel (i.e., the blend) consists of 0.3 barrels of

fuel 2, 0.3 barrels of fuel 3, and 0.4 barrels of fuel 4.

Fuel 1 New Fuel
Property 1: Density 0.996 0.940
Property 2: Linear Viscosity 1.819 1.189
Property 3: Sulphur 1 1.190
Property 4: Linear Flash Point 204.8 227.0
Price ($/barrel) 16.08 18.81

Compared to fuel 1, the blend has a lower density

(good), lower linear viscosity (good), higher sulphur

(bad), higher linear flash point (bad)1, and most

importantly, is more expensive (bad).

Hence this blend does not represent an arbitrage

opportunity. However, there are many other possible

blends, and we can use a linear program to search

for the best blend. In this case, we are trying to find

the cheapest blend of fuels 2, : : :, 12 that is at least as

good as fuel 1 in each of the four properties.

1 Higher flash points are preferred, but the linear flash point measure is in-
versely related to flash point (just as API and density are inversely related).
Thus, lower linear flash points are preferred.



Decision Models: Lecture 5 27

Linear Program for Fuel 1

Given data:
pj = price of fuel j (in $/barrel), j = 1; : : : ;12

dj = density of fuel j, j = 1; : : : ;12

vj = linear viscosity of fuel j, j = 1; : : : ;12

sj = sulphur content of fuel j, j = 1; : : : ;12

fj = linear flash point of fuel j, j = 1; : : : ;12

Decision Variables:

xj = # of barrels of fuel j in the blend, j = 2; : : : ;12

Linear Program for Fuel 1:

min
12∑
j=2

pjxj

subject to:

(density)
∑12

j=2djxj ⅔ d1

(linear viscosity)
∑12

j=2vjxj ⅔ v1

(sulphur)
∑12

j=2 sjxj ⅔ s1

(linear flash point)
∑12

j=2 fjxj ⅔ f1

(blend 1 barrel)
∑12

j=2xj = 1

(nonnegativity) xj � 0; j = 2; : : : ;12

Similar linear programs can be developed for each of

the other fuels.
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Spreadsheet Solution

A A B C D E F G H I
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Linear Program for Fuel 1LAKE.XLS
Cost of

BlendFuel 4Fuel 3Fuel 2
$16.800.0000.8700.130Barrels

$24.10$17.33$13.25price

Properties of Fuels
Fuel 1ConstraintBlendFuel 4Fuel 3Fuel 2
0.996<=0.9960.8550.9960.996density
1.819<=1.8190.2431.8191.819linear viscosity

1<=1.00.20.73sulphur
204.8<=204.8260.4204.8204.8linear flash point

1=1.0111barrels

Decision Variables
Objective Function
=SUMPRODUCT(C4:E4,C5:E5)

=SUMPRODUCT($C$4:$E$4,C9:E9)

This figure shows the spreadsheet solution for the

fuel 1 linear program. It only uses fuels 2, 3, and 4

to keep the figure small. The optimal solution gives

a new fuel which is at least as good as fuel 1 but is

more expensive.
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Linear Programming Results

Original Price of
Price Cheapest Blend

Fuel 1: 16.08 16.80
2: 13.25 16.08
3: 17.33 18.19
4: 24.10 23.62∗

5: 20.83 21.01
6: 20.10 20.83
7: 21.46 N/A
8: 21.00 N/A
9: 20.00 21.00

10: 25.52 N/A
11: 24.30 N/A
12: 11.50 14.47

∗Arbitrage opportunity

The cheapest blend of fuel 3, for example, is

obtained by solving a linear program with fuels 1, 2,

4, : : :, 12 as decision variables.

N/A means that there is no blend which is at least as

good as the fuel in question, i.e., the LP is infeasible.

The table indicates an arbitrage opportunity with

fuel 4. The optimal solution blends x3 = 0:005,

x8 = 0:411, and x10 = 0:584 to give one barrel of a

new fuel that is at least as good as fuel 4.
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Optimal Solution for Fuel 4 LP

The new fuel (i.e., the blend) consists of 0.005 barrels

of fuel 3, 0.411 barrels of fuel 8, and 0.584 barrels of

fuel 10.

Fuel 4 New Fuel
Property 1: Density 0.855 0.852
Property 2: Linear Viscosity 0.243 0.243
Property 3: Sulphur 0.2 0.2
Property 4: Linear Flash Point 260.4 188.9
Price ($/barrel) 24.10 23.62

Compared to fuel 4, the blend has a lower density

(good), lower linear viscosity (good), lower sulphur

(good), lower linear flash point (good), and a lower

price.

Thus the blended fuel is better than fuel 4 (in terms of

each of the four properties) and cheaper than fuel 4.

So a trader could buy fuels 3, 8, and 10, blend them

and sell the new fuel for the higher price of fuel 4.
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Additional Considerations

◦ Blending costs

! Fixed versus variable costs

! The variable blending costs tend to be small

but can be easily incorporated in the LP

! Arbitrage exists if enough volume can be

traded to cover any fixed costs

◦ Trading System Development

! Real-time data collection

! Automatic solution of multiple LPs requires

customized software and an advanced

operating system (e.g., Unix or Windows NT,

not DOS or Windows)

◦ Trading Results

! Lakefield earned $300,000 in profit on a

single trade with their blending LP
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For next class

◦ Read Chapter 6.11 in the W&A text and

“Portfolio Optimization Using Linear

Programming” in the readings book.

◦ Optional readings: “Exploring the New

Efficient Frontier” and “Asset Allocation in a

Downside-Risk Framework” in the readings

book.


