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Abstract

One of the fundamental problems in operations management is determining the
optimal investment in capacity. Capacity investment consumes resources and the
decision, once made, is often irreversible. Moreover, the available capacity level
affects the action space for production and inventory planning decisions directly.
In this paper, we address the joint capacitated lot sizing and capacity acquisition
problem. The firm can produce goods in each of the finite periods into which the
production season is partitioned. Fixed as well as variable production costs are
incurred for each production batch, along with inventory carrying costs. The pro-
duction per period is limited by a capacity restriction. The underlying capacity
must be purchased up front for the upcoming season and remains constant over
the entire season. We assume that the capacity acquisition cost is smooth and
convex. For this situation, we develop a model which combines the complexity
of time-varying demand and cost functions and of scale economies arising from
dynamic lot-sizing costs with the purchase cost of capacity. We propose a heuris-
tic algorithm that runs in polynomial time to determine a good capacity level and
corresponding lot sizing plan simultaneously. Numerical experiments show that
our method is a good trade-off between solution quality and running time.
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1 Introduction

One of the fundamental problems in operations management is figuring out how to

determine optimal investment in capacity. A firm’s capacity determines its maximal

potential production per time unit. Acquiring capacity is usually costly and time con-

suming, and once the investment is made, the cost is often partially or completely

irreversible, as installed capacity is difficult to adjust in the short term. Moreover, the

decision on how much capacity to acquire also strongly influences the action space for

future operations planning. Obviously, acquisition of too much capacity wastes invest-

ment that could be used for other important operation activities such as new product

development and marketing. Too little capacity means long waiting times, missed sales

opportunities and lost revenue. Therefore, it is necessary to find an effective and com-

prehensive method to determine the proper capacity configuration for operations with

specific planning horizons.

In this paper, we consider a single-production facility that produces a single prod-

uct item to satisfy a known demand. Firms must determine optimal capacity and at

the same time solve a capacitated lot-sizing problem. The major difference between

our study and previous efforts to address capacitated lot-sizing problems, such as the

well-known papers of Wagner and Whitin (1958) and Zangwill (1968), is that in our

model, the capacity level is an internal decision. We consider capacity-acquisition, pro-

duction, and inventory-holding costs and formulate the problem as a cost-minimizing

Non-Linear Mixed Integer Programming (NLMIP) model. It belongs to a problem class

with a quadratic constrains, which is generally NP-hard according to the classification

given in Garey and Johnson (1979). In our case a pseudo-polynomial solution approach

is available. We find that this obvious method is computationally unattractive, and

we therefore develop a heuristic algorithm. Our numerical experiments show that our

method results in substantial improvements in running time with only minor sacrifice

in solution quality.

This study seeks to provide a building block for more complicated models involving

lot sizing and capacity decisions, for example, multiple product or multiple stage ca-

pacity acquisition and lot sizing problem. Solutions of a pseudo-polynomial algorithm

are used as benchmark to measure the performance of our heuristics algorithms. The

remainder of this paper is organized as follows. We review the relevant literature in

Section 2. Section 3 introduces the relevant notation and the basic model. In Section 4

we propose a heuristic to solve this problem. A computational study and numerical re-

sults are presented in Section 5. Finally, the conclusions and future research directions

are given in Section 6.
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2 Literature Review

Two venues of research are relevant with our joint lot-sizing and capacity-acquisition

problem including dynamic lot-sizing and capacity-investment studies. Here, we con-

centrate on the most representative problem or the one most closely relevant to our

interest. The aim of capacity-acquisition decisions is to select the proper capacity that

not only satisfies demand completely, but also reduces overcapacity. The research

on capacity acquisition includes two major streams: the traditional mathematical pro-

gramming models and the economic models.

The flexible capacity investment and management problems was addressed at a rel-

atively early stage with mathematical programming methods. Fine and Freund (1990)

introduce a two-stage stochastic programming model and analyze the cost-flexibility

trade-offs involved in the investment in product-flexible manufacturing capacity for a

firm. They address the sensitivity of the firm’s optimal capacity investment decision

to the costs of capacity, demand distribution, and risk level. van Mieghem (1998) stud-

ies the optimal investment problem of flexible manufacturing capacity as a function of

product prices, investment costs and demand uncertainty for a two-product production

environment. He suggests finding the optimal capacity by solving a multi-dimensional

news-vendor problem assuming continuous demand and capacity. Netessine et al.

(2002) propose a one-period flexible-service capacity optimization and allocation model

taking the capacity acquisition, usage, and shortage costs into account. While each pa-

per mentioned above considered the multiple products and multiple resources prob-

lems with demand uncertainties, their focuses were limited to single-period models.

Apart from the studies on flexible capacity investment, many efforts have also been

made to solve generalized capacity-investment problems. Harrison and van Mieghem

(1999) develop a single-period planning model to incorporate both capacity investment

and production decisions for a multiple-product manufacturing firm. This study yields

a multi-dimensional descriptive model generated from the “news-vendor model”, and

gives qualitative insights into real-world capacity-planning and capital-budgeting prac-

tices. Nevertheless, the decisions on optimal capacity investment are highly general-

ized, and the production plan decisions were not explicitly presented. van Mieghem

and Rudi (2002) extend the work of Harrison and van Mieghem (1999) to include an op-

erations environment with multiple products, production processes, storage facilities,

and inventory management. Moreover, they investigate how the structural properties

of a single period extend to a multi-period setting. They also improve previous studies

by considering some inventory-management issues.
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Since the news-vendor model is developed and applied to capacity-decision prob-

lems, it has been an important analysis technique to model and solve complex capacity-

optimization problems under uncertainty. Burnetas and Gilbert (2001) propose a news-

vendor-like characterization of the optimal production policy on capacity under un-

known demand and increasing costs within a finite horizon with discrete time peri-

ods. The approach focuses on the trade-off between increasing production costs and

the learning mechanism about demand, neglecting set-up costs and capacity-supplying

limitations.

Although the research has produced masses of data, lot-sizing remains one of the

most difficult problems in production planning. This subject has been studied ex-

tensively in the literature. More than 50 years ago, Wagner and Whitin (1958) devel-

oped a forward algorithm for a general dynamic version of the uncapacitated economic

lot-sizing model. The zero-inventory ordering theorem is a key contribution in this

paper for the uncapacitated cases. Although many alternative algorithms have been

presented, the dynamic programming method remains the major approach to solving

lot-sizing problems. More recent studies consider a dynamic lot-sizing model with gen-

eral cost structure. Federgruen and Tzur (1991) present a simple forward algorithm

which solves the general dynamic lot-sizing model in O(T logT) time and in O(T) un-

der mild assumptions on the cost data. This is an key improvement over the previously

recommended well-known shortest path algorithm solution in O(T 2) space. Wagel-

mans et al. (1992) extend the range of allowable cost data to allow for coefficients that

are unrestricted in sign. They develop an alternative algorithm to solve the resulting

problem in O(T logT) time.

The uncapacitated lot-sizing problem is however an ideal case and hardly applicable

to real-world operations. Capacity constraints always heavily influence production-plan

decision-making. Furthermore, the general capacitated lot-sizing problem is NP-hard,

see Bitran and Yanasse (1982). For the special case of a constant capacity restriction

over the entire planning horizon, a number of efficient algorithms are capable of cal-

culating an optimal production plan. For example, Florian and Klein (1971) present

an algorithm with the computational complexity O(T 4) for the capacitated lot-sizing

problem and explored the important properties of an optimal production plan. The

optimal plan consists of a sequence of optimal sub-plans. Baker et al. (1978) discover

some important properties of an optimal solution to the problem when the production

and inventory-holding costs are constant.

Some other studies tried to relax the strict cost-structure restrictions in the algo-

rithms reviewed above. Kirca (1990) present a dynamic programming-based algorithm

with the computational complexity of O(T 4) and Shaw and Wagelmans (1998) propose
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a dynamic programming algorithm for the capacitated lot-sizing problem with gen-

eral holding costs and piecewise linear production costs. The algorithm of the latter

reduces the computation time to O(T 2d̄), where d̄ is the average demand when pro-

duction cost is linear. Many other contributions in this area include Federgruen et al.

(2007), van Hoesel and Wagelmans (1996) and Chen et al. (1994) etc. In addition, heuris-

tic algorithms are also applied to solve dynamic lot-sizing problems for efficiency. For

example, Kiran (1989) proposes a combined heuristic algorithm based on the perfor-

mance analysis of Silver-Meal heuristics. Alfieri et al. (2002) consider the application of

trivial LP-based rounding heuristics to the capacitated lot-sizing problem.

Given the large number of research results on lot sizing it is impossible to exam-

ine carefully all of them. We refer interested readers to the following review papers.

Karimi et al. (2003) review single-level lot-sizing problems, their variants and solution

approaches. The authors introduce factors affecting formulation and the complexity

of production-planning problems, and introduce different variants of lot-sizing and

scheduling problems. Both exact and heuristic approaches for the problem are dis-

cussed. Jans and Degraeve (2008) present an overview on recent developments on the

deterministic dynamic lot-sizing, focusing on the modeling of various industrial exten-

sions and not on the solution approaches. The authors first define several different

basic lot-sizing problems, and propose some extensions of these problems.

However, these studies all address capacity-investment or production-planning prob-

lems separately. The implications of combining these problems are rarely discussed. As

an exception, Atamturk and Hochbaum (2001) study a problem on capacity acquisition,

subcontracting, and lot sizing. This is the only study we have come across that is closely

related to our studies. However, the authors only discuss some special cases of produc-

tion and holding-cost structure. Moreover, the study still focus on solving a series of

capacitated lot-sizing problems discretely, causing the computational complexity to in-

crease exponentially with the number of planning periods and demands. Additionally,

Ahmed and Garcia (2004) study a dynamic capacity-acquisition and assignment prob-

lem in a simplified operations setting to determine the resource capacity and allocation

of the resources to tasks. This study actually proposes a capacity-expansion and plan-

ning approach without considering inventory carry-over costs and the determination of

production plans.

In summary, while progress has been made on investigating capacity-acquisition

and lot-sizing decisions, the research has as yet yielded few results that pertain to joint

optimization of capacity acquisition and production decisions under a capacitated lot-

sizing cost structure, even for a single firm.
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3 The Model

In this section, we analyze the capacity-acquisition and lot-sizing problem. A firm has

to determine the optimal capacity to purchase and set a corresponding lot-sizing plan

simultaneously.

The firm produces an item or product that consumes a common resource during

its production. The amount of the resource the firm purchased is assumed to be the

capacity limit in a dynamic lot-sizing setting. An example of this might be the number

of trucks to lease, the work force to hire and other supportive activities for production.

The firm has to purchase the capacity for the entire planning horizon and can then

use the capacity over the planning horizon. The capacity must satisfy the demand

constraints and the excess capacity will be disposed of without extra disposal costs.

The production plan will be considered in a planning horizon of T periods. If the

firms face a natural sales season introducing a new model or variant in each season,

a natural choice of T arises, e.g. T = 52 weeks in the automobile manufacturing in-

dustry operating with a weekly production and sales schedule. Otherwise T is chosen

large enough to ensure that the firms’ decisions pertaining to the initial periods of the

planning horizon are not affected by this truncation of the planning process.

The firm has a demand stream during the planning horizon, known only to the firm

itself and following some predictable seasonality pattern. Thus, let

dt = the demand faced by firm in period t, t = 1, . . . , T

The firm produces goods via a production and distribution process that, in principle,

allows for inventory replenishment in each period. As in standard dynamic lot-sizing

problems, we assume that fixed as well as variable production costs are incurred as

well as inventory carrying costs, which are proportional to each unit end-of-the-period

inventory. We assume that all fixed order costs stay constant over the planning horizon,

while all other cost parameters may fluctuate in arbitrary ways. We define the cost

parameters and decision variables as follows.

Costs:

f = the fixed setup cost for a production batch produced in any period t, t =

1, . . . , T ;

at = the per unit production cost rate for a production batch delivered in period

t; t = 1, . . . , T ;

ht = the cost to carry one unit product in inventory at the end of period t, t =

1, . . . , T .
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Decision variables:

xt = the amount of product produced in period t, t = 1, . . . , T

yt =





1 xt > 0

0 otherwise

It = the inventory amount at the end of period t, t = 1, . . . , T

C = the capacity acquired by the firm.

The firm needs to acquire the capacity in question on a spot market prior to the season.

We name the acquisition cost as A(C) and assume it is smooth and convex. Such an

assumption is reasonable, among other explanations, when the purchase of the firm

influences the market price. Our proposed algorithm works with any function A(C)

that is a continuous and convex function. As a simple illustration, let the market price

for the resource be p = Λ+θC where Λ and θ are positive constants. Hence the capacity

acquisition cost is:

A(C) = p · C = C(Λ+ θC) (1)

We make following assumptions that are fairly standard in the peer literature. The

inventory at the beginning of the planning level and the end of the planning horizon

is zero respectively. Demand shortage is not allowed, because, for the deterministic

case, it is optimal to pursue the 100% service level. The setup times are not considered.

For deterministic setup times, it is easy to be included after optimal lot-sizing strategy

is determined by moving the setup period forward. For the stochastic setup times,

it would result in a completely different problem. Capacity can be acquired at any

positive amount. While one could argue that these assumption are far from reality in

many cases, we chose this setup for two reasons. Firstly, we want to investigate the

principal relationship between capacity and cost in the lot-sizing context and to view

our model as a building block for further extensions. Secondly, many extensions make

the model actually easier to solve or are theoretically not interesting. We will discuss

some possible extensions in the directions for future research in the conclusions of

this article.

This gives rise to the following formulation of the problem P:

z =min
T∑

t=1

(atxt + htIt + fyt)+A(C) (2)
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subject to

It = xt − dt + It−1, ∀ t = 1, . . . , T (3a)

xt ≤ Cyt , ∀ t = 1, . . . , T (3b)

I0 = IT = 0 (3c)

xt ≥ 0, It ≥ 0, yt ∈ {0,1}, C ≥ 0, ∀ t = 1, . . . , T . (3d)

where the objective function (2) minimizes the production and inventory-holding costs

as well as the acquisition costs of the capacity. Constraints on the problem are: Equa-

tion (3a) ensures that inventory is balanced; Production is restricted by (3b); Equation

(3c) sets initial and final inventories to zero; and the bounds of the variables are re-

stricted by (3d). Solving the model entails simultaneously determining the optimal

capacity, order periods, and production amounts in each order period. Capacity is

assumed to be a continuous variable, meaning that capacity can be acquired at any

non-negative level. It would be possible to linearise the quadratic constraints (3b) us-

ing a big-M formulation by replacing each constraint by two separate ones. We have

tried to solve the resulting programme, which has a quadratic objective function in the

case of linear capacity acquisition price, using CPLEX and found this computationally

unattractive. We report on this in §5.

4 The Heuristic

4.1 Basic idea of the heuristic

The simultaneous calculation of an optimal capacity and an optimal production plan

as explained above is a mixed integer nonlinear programming problem. This problem

class is generally NP-hard according to Poljak and Wolkowicz (1995) and Bussieck

and Pruessner (2003). However, the capacitated lot-sizing problem with constant ca-

pacity can be solved in polynomial time. For example, Florian and Klein (1971) suggest

an O(T 4) algorithm, and alternative approaches are also suggested by van Hoesel and

Wagelmans (1996) and Chen et al. (1994) that run in O(T 3) time. Therefore, the prob-

lem P can be solved by discretizing the interval of potential values for the capacities

and solving for each of those values. So it is not NP-hard in the strong sense, and can

be solved in pseudo-polynomial time.

Solving problems with reasonable sizes by discretizing the solution space for the

capacities with CPLEX, although theoretically satisfactory, has shown to result in large

computational times that make such a methodology impractical (see §5 for details).
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Therefore, in this section, we develop a O(T 3 logT) heuristic algorithm that improves

the computational efficiency dramatically.

To facilitate the presentation of our algorithm, we use the following notation. We

define

D(t) =
∑t
j=1 dj to be the cumulative demand in the first t periods, t = 1, . . . , T ;

X(t) =
∑t
j=1 xj to be the cumulative production level in the first t periods, t =

1, . . . , T ;

H(i, j) =
∑j−1
k=i hk to be the cost of holding a product from period i to period j,

∀ 1 ≤ i < j ≤ T ;

H(i) =
∑T
k=ihk to be the cost of holding a product from period i to the end of the

planning horizon;

Cnmin = to be the minimum capacity that allows a feasible solution with n setups;

Θ(n) = {1, ℓ2, . . . , ℓn} to be a setup strategy with the fixed setup number n, n =

1, . . . , T . The orders in periods 1, ℓ2, ..., ℓn obey the assumption that the

available capacity is at least Cnmin.

In analogy to the algorithm presented by Federgruen and Meissner (2009), who present

an algorithm for a combined pricing and uncapacitated lot sizing problem, the heuristic

developed here considers each possible number of setups n, n = 1, . . . , T separately

and determines the best capacity and production plan. We solve the following problem:

π∗(C) = Kn(C)+A(C) (4)

= min
n

min
C
(nf + Fn(C)+ C (Λ+ θC)) (5)

where the function Fn(C) represents the production and inventory cost for a fixed

setup number n.

The algorithm consists of three major steps:

Step 1 For each setup numbers n = 1, · · · , T , construct an initial solution with the

minimal capacity that allows a feasible solution;

Step 2 Under each setup number n, update lot size plan and calculate the cost sav-

ings with the incremental capacity. This allows us to determine the best capacity

acquisition level and lot size plan for each n respectively.

Step 3 Determine the optimal capacity and lot size solution by comparing the total

cost over the setup numbers.

http://www.meiss.com/
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The algorithm details are presented in the following sub-sections. We also analyze the

complexity of the algorithm in Section 4.5.

4.2 Construction of the initial solution

For each number of setups n, we first find the minimal capacity that allows a feasible

solution to the problem. This minimal capacity Cnmin can be calculated as follows:

Cnmin = max

{
D(T)

n
, max

t=1,...,T

{
D(t)

t

}}
∀n = 1, . . . , T (6)

After determining this minimal capacity, we find the number of order periods neces-

sary for each fixed setup number n = 1,2, . . . , T . We start with a solution that places

the orders as late as possible under the minimal feasible capacity Cnmin, and then we

improve the solution by shifting the orders forward or backward if this is beneficial.

The procedure is fully described in Algorithm 1. While it does not yield the optimal

solution in general, in the important case of no prevailing speculative cost motives and

Cnmin being determined as the average demand per period, it does result in an optimal

initial solution:

Proposition 1 Assume that there is no speculative cost motive, i.e. a(s)+H(s, t) ≥ a(t)

for all 1 ≤ s < t ≤ T , and that Cnmin =
D(T)
n , then Algorithm 1 results in an optimal

solution for the fixed setup number n.

Proof : Let the initial production strategy from the Algorithm 1 be Θ0 = {ℓ0
1, ℓ

0
2, . . . , ℓ

0
n},

and moreover, since Cnmin =
D(T)
n , the production quantity in each setup period has to

be Cnmin in order to satisfy demands. The proposition will be proved if we show the

minimal cost π∗ = π(Cnmin|Θ0).

Suppose that the strategy Θ0 is not optimal given the condition described in Propo-

sition 1, there exists another production strategy Θ = {ℓ1, ℓ2, . . . , ℓn} which makes

π(Cnmin|Θ) ≤ π(Cnmin|Θ0). According to the algorithm, the setups ℓ0
i , i = 1, . . . , n

cannot be postponed in order to satisfy the feasibility of solution, thus, there must

exist at least one i, so that ℓ0
i−1 < ℓi < ℓ

0
i . This means that a(ℓi)+H(ℓi, ℓ

0
i ) ≤ a(ℓ

0
i ). It

contradicts the assumption of no speculative cost motive, a(s) +H(s, t) ≥ a(t) for all

1 ≤ s < t ≤ T . Thus, Algorithm 1 results in an optimal solution. �

4.3 Update with increased capacity

Having found an initial solution, we update it with increased capacity. We introduce

the following additional notation:
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Algorithm 1 Initialization

1: R = 0
2: N = n

Require: d,a,H,CNmin
3: for t = T : −1 : 1 do

4: R = R + dt ;
5: if R >= Cnmin then

6: xt = C
n
min

7: lN = t
8: yt = 1
9: N = N − 1

10: R = R − Cnmin
11: end if

12: end for

13: for i = 2 : 1 : n do

14: V = 0
15: B = 0
16: for j = li−1 : 1 : li − 1 do

17: if V > aj +H(j, li)− ali then

18: V = aj +H(j, li)− ali ;
19: B = j;
20: end if

21: end for

22: if V < 0 then

23: yli = 0
24: li = B
25: yli = 1
26: end if

27: end for

28: R := 0
29: for t = T : −1 : 1 do

30: R = R + dt ;
31: if yt = 1 then

32: xt = min{R,Cnmin}
33: R = R − xt
34: end if

35: end for
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Ω = a list of potential saving opportunities;

Ξ =
{
ξi, i = 1, . . . , T

}
, where ξi = {0,1};

Φ = a list of active savings generated from Ω;

Γ = (ǫmin, Savings) to be the executive list to update the lot sizing plan in each

iteration of computation.

The list of potential saving opportunities Ω is created first, and then elements of po-

tential savings Ω are converted to a list of active savings Φ that we pursue at a given

capacity increase. Each time a saving opportunity is exhausted, we check whether an-

other element can be brought from Ω to Φ. Once Ω is empty, stop the algorithm. Each

element of Ω is a quadruplet of the form
{
ℓ−, ℓ+, δ, ǫ

}
, ℓ− represents the period in

which production is to be decreased, ℓ+ is the period in which production is to be

increased, and δ is the potential cost saving per unit, and ǫ denotes the maximum

number of units for which the savings opportunity can be exploited.

After finding the initial solution, we update the production and lot sizing plan while

the capacity increases. For any given number of order periods, we examine the pos-

sibility of improving the solution by using the additional capacity that the company

might acquire by comparing the cost of such a change between two adjacent order pe-

riods. The two options are: either a shift of production to a previous order period or

a postponement to a later order period. The first case, shifting the production earlier,

creates no problems and can be repeated until the decreasing order period reaches

zero. A postponement is potentially problematic, but can be done either until the first

decreasing period has reached zero production level or until a further decrease leads

to an infeasible solution. The maximum decrease is given by:

ǫ = min



xℓi ,




i∑

k=1

xℓk −

ℓi−1∑

k=1

dk





 (7)

In Algorithm 2, under the fixed setup number n, we compare each pair of sequential

setups in period ℓi and ℓi+1, i = 1, . . . , n − 1 to determine {ℓ−, ℓ+, δ, ǫ}, and adding it

to Ω.

Based on the saving opportunities matrix generated from the Algorithm 2, we sort

the potential savings candidates Ω. Next, the Algorithm 3 moves to realize the savings.

In order to keep the linear decrease of lot sizing cost, we consider the capacity increases

in a variable step size that is the minimum value of ǫ in the active savings candidate list

Φ. The value of the current capacity adding a step size will be a breakpoint of capacity

increasing. Upon reaching one of the breakpoints, the savings opportunity has been
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Algorithm 2 Build sorted list of potential savings opportunities Ω
1: Given: Set of order periods Θ(n) = {1, ℓ2, . . . , ℓn}
2: new list Ω
3: for i = 1 : 1 : n− 1 do

4: if ali +H(li, li+1) < ali+1 then

5: Insert new element in Ω: (li+1, li, ali+1 − ali −H(li, li+1), xli+1)
6: else

7: if ali +H(li, li+1) > ali+1 then

8: if X(li)−D(li+1 − 1) < xli then

9: Insert new element in Ω: {li, li+1, a(li)+H(li, li+1)− ali+1 , xli}
10: else

11: Insert new element in Ω: {li, li+1, ali +H(li, li+1)− ali+1 , X(li)−D(li+1 − 1)}
12: end if

13: end if

14: end if

15: end for

exhausted and is removed from the calculation. We have two options: either we stop

when one order period has reached zero, with the reasoning that we can reach a similar

solution in a run with n− 1 setups or, since there is no harm from the point of view of

complexity, we can proceed until our list is empty.

According to the heuristic procedure described above, some structural properties

of the lot-sizing function Kn(C) are realized and we clarified them in Lemma 1 below.

An outline of proof is provided to help illustrate the algorithm and the Lemma.

Lemma 1 For a fixed setup number n, the lot-sizing cost function Kn(C) is piecewise-

linear, non-increasing and convex in capacity.

Proof : The lot-sizing cost function is Kn(C) = Fn(C) + nf . Since fixed setup cost is

constant, if the total production and inventory cost function Fn(C) is piecewise-linear

decreasing in capacity. Given a production plan
{
xℓ1

, . . . , xℓn

}
, the production and

inventory cost function is

Fn(C) =
n∑

i=1


aℓixℓi +

ℓi+1∑

j=ℓi+1

hj
(
X(j)−D(j)

)

 . (8)

In order to prove that Fn(C) is piecewise-linear decreasing in capacity, the following

three properties of the function need to be proved respectively (all discussion below is

based on a fixed setup number n):

(1) Fn(C) is non-increasing in capacity.

If capacity increases to be C
′
, the production plan {xℓ1

, . . . , xℓn} is still feasible,

and the decision space is broader, therefore, we have at least Fn(C
′
) ≤ Fn(C).
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Algorithm 3 Calculation of cost function with increased capacity

1: M = size (Ω)
2: new binary array Ξ[T] := 0
3: for i = 1 : 1 : M do

4: if Ξ(Ω[i]→ ℓ−) = 1 then

5: delete element Ω[i]
6: M := M − 1
7: else

8: Ξ(Ω[i]→ ℓ+) := 1
9: Ξ(Ω[i]→ ℓ−) := 1

10: end if

11: end for

12: delete Ξ[T] := 0
13: N = 0
14: new binary array Ξ[T] := 0
15: new list Φ
16: new variable Savings := 0
17: for i = 1 : 1 : M do

18: if Ξ(Ω[i]→ ℓ+) 6= 1 then

19: Φ = Φ ∪Ω[i]
20: Savings = Savings + Ω[i]→ δ
21: Ω = Ω\Ω[i]
22: Ξ(Ω[i]→ ℓ+) = 1
23: N = N + 1
24: end if

25: end for

26: M = M - N
27: new list Γ
28: repeat

29: ǫmin = mini=1,...,N Φ[i]→ ǫ
30: Append element to Γ : (ǫmin, Savings)
31: Update {xt, yt, It}
32: for i = 1 : 1 : N do

33: Φ[i]→ ǫ = Φ[i]→ ǫ− ǫmin
34: if Φ[i]→ ǫ = 0 then

35: Savings = Savings - Φ[i]→ δ
36: for j = 1 : 1 : M do

37: if Ω[j] → ℓ+ = Φ[i]→ ℓ+ then

38: Φ = Φ ∪Ω[i]
39: Savings = Savings + Ω[i]→ δ
40: Ω = Ω\Ω[i]
41: end if

42: end for

43: Savings = Savings - Φ[i]→ δ
44: Φ = Φ\Φ[i]
45: end if

46: end for

47: until Φ = ∅
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(2) Fn(C) is piecewise-linear in capacity.

According to the initial solution from Algorithm 1 and Algorithm 2, search all

cost saving opportunities and record them in array Ω which allows the capacity

to vary in the range [Cnmin,D(T)].

Furthermore, by Algorithm 3, we deal with the saving opportunities array Ω. Ac-

cording to the heuristic procedure, the computation includes a finite number of

iterations based on different capacity levels.

In each iteration, we define and calculate an active cost-saving array Φ = {φm, m =

1,2, . . . ,M}, where φm = {ℓ−, ℓ+, δm, εm}. For the detailed steps please refer to

the algorithm.

From the array Φ, we determine a capacity increase quantity ∆C = min ǫm with

the unit cost saving
∑M
m=1 δm. Thus, cost function Fn(C) is linear non-increasing

in capacity interval (C,C + ∆C]. Capacity level (C + ∆C) is a new breakpoint of

capacity increase.

(3) Fn(C) is continuous and convex.

In the heuristic algorithms, a new breakpoint of capacity increase is always calcu-

lated based on the capacity level of the previous iteration. In addition, the solution

of the production plan of an iteration is always the initial solution of the next it-

eration. Therefore, we see that the cost function Fn(C) is continuous. Moreover,

since the slope of the function Fn(C) results from picking various elements from

Ω, the convexity is a direct result of our picking elements in decreasing order of

their savings.

Finally, given the setup number n, the fixed setup cost is constant, and therefore,

the conclusion holds. �

On a more abstract level, the above result restates a well-known result from parametric

analysis for linear programmes, see for example Dinkelbach (1969). However, the above

provides some intuition for our algorithm. For an illustration of Lemma 1, see Figure 1

selected from a numerical example discussed in Section 5.

4.4 Calculation of the optimal capacity

Upon obtaining the piecewise-linear functions for each individual setup number n, we

calculate the optimal capacity to acquire by finding the appropriate breakpoint. Ac-

cording to the Lemma 1, and finite possible setup numbers, the optimal solution is

obtained by comparing the minimal costs of all possible setup numbers. The optimal
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Figure 1: An example of cost variation with the capacity increase under a fixed setup
number

capacity and lot-sizing plan are linked to the setup number that gives rise to minimal

cost overall. At this stage, the entire heuristic procedure is completed in polynomial

time as shown in the following section.

While this procedure may not be optimal, our computational experiments show that,

in many cases, our results are very close to optimality. In the numerical study Section,

we compare the heuristics solution with the solution obtained by a full enumeration

over the discretized decision space method and using CPLEX 11.0 to solve the individual

instances.

At last, we would like to comment on some possible variants on the model and

algorithm. The algorithm is robust if the acquisition cost A(C) is a step function. The

only modification is to consider a series of sub-capacity intervals caused by the step

function within the entire capacity range. However, the decreasing or concave capacity

acquisition function will not lead to the results we achieved.

4.5 Complexity

To assess the complexity of the algorithm, first, the individual complexity of the major

algorithm steps are described. Note that the steps taken to solve the problem have

to be repeated T times, once for each potential setup n. Then in each iteration under
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fixed setup n, finding the minimal feasible capacity can be done in O(T); next, finding

the initial solution takes O(T) for the first phase and O(T) for the final initial solution;

Third, in the update procedure of initial solution with the capacity increase, finding

potential savings again takes O(T), since n pairs at most have to be evaluated. Af-

ter obtaining the list of potential savings, this list has to be sorted once, which takes

O(T logT) using Quicksort or a similar algorithm. Finally, searching the list for poten-

tial savings to determine each breakpoint can be done in O(T). Given that there are at

most n breakpoints, this leaves us with a complexity of O(T) to update the solution

from the previous lower capacity level.

Considering the relationships (paralleled or hierarchical) between the steps, the in-

tegrated algorithm complexity is as follows. For each setup, we find the minimum

capacity, find the initial solution, optimize the initial solution, and finally compare the

optimal solution for each setup number which cause a complexity of O(T 3). Based on

each initial solution under Cnmin, the improvement procedure including the determina-

tion of Ω with a complexity of O(T), the sorting of potential savings adding another

O(T logT) and updating of solution adding O(T) again. Doing this totally introduces

a complexity O(T logT). The final comparison of each solution of each setup number

gives a complexity of O(T 2). Taking everything into account, we have a complexity

of O(T 3) + O(T 3 logT) + O(T 2). Without loss of the generality, the overall heuristic

algorithm terminates in O(T 3 logT).

5 Numerical Example

In this section, we present computational examples for our heuristic. Using the heuris-

tic algorithm we developed for the capacity acquisition and lot sizing problem, a nu-

merical study is carried out to show the robust performance of the algorithm. It is

assumed that the firm faces a planning horizon of T = 54 periods with varying sea-

sonal demand. The demand behaves according to:

dt = βt ∗ d̄ (9)

We consider six different seasonality patterns {βt : t = 1, . . . ,54} as follows:

(I) Time-invariant demand functions: βt = 1 ; t = 1, . . . ,54

(II) Linear Growth: βt = 0.25+ 1.5 (t−1)
53 ; t = 1, . . . ,54

(III) Linear Decline: βt = 1.75− 1.5 (t−1)
53 ; t = 1, . . . ,54
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(IV) Holiday Season at the Beginning of the Planning Horizon:

βt =





54
114 +

540
570(t − 1) , t = 1, . . . ,6

594
114 −

540
570(t − 7) , t = 7, . . . ,12

54
114 , t = 13, . . . ,54

(10)

(V) Holiday Season at the End of the Planning Horizon:

βt =





54
114 , t = 1, . . . ,42

54
114 +

540
570(t − 43) , t = 43, . . . ,48

594
114 −

540
570(t − 49) , t = 49, . . . ,54

(11)

(VI) Cyclical Pattern:

βt =





0.25+ 0.75(t − 1) , t = 1, . . . ,3

1.75− 0.75(t − 4) , t = 4, . . . ,6

βtmod6 , t = 7, . . . ,54

(12)

where tmod6 denotes t modulo 6. The first pattern reflects a situation where demand

functions are time-invariant and the second (third) pattern one with linear growth (de-

cline). The fourth and fifth patterns represent a planning horizon with a single season

of peak demands either at the beginning or at the end of the planning horizon. The last

pattern (VI) is cyclical with a cycle length of six periods, such that demands in the two

middle periods of each cycle are 7 times their value in the first and last period, while

βt = 1 in the remaining two periods of the cycle.

Using all combinations of the 6 demand patterns and the 3 TBO levels, we gener-

ate a number (18) of test problems. An average demand d̄ = 50 is assumed. A group

of replicable examples are first provided to show the differences between optimal and

heuristic solutions on capacity, costs and setup numbers. We use at = 15 and ht = 5

and analyse three different setup cost levels considering the assumption of no specu-

lative inventory in firms. In addition, in order to calculate the capacity acquisition cost,

we choose constants Λ = 200 and θ = 1. We determine the fixed setup cost indirectly

by first choosing the EOQ-cycle time “Time-between-Orders (TBO)” =
√

2f
hd and deter-

mine the setup cost value f from this identity. Let average demand d̄ = 50, and then
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fix the TBO value as 2 for low TBO values, 5 for medium TBO values and 8 for high TBO

values. All other parameters maintain same as above.

The heuristic algorithm is coded using Matlab 7.5. We compare the heuristic so-

lutions with benchmark solution as shown in Table 1. The bechmark solutions are

obtained by discretising the potential capacity space, not necessarily to integer values,

and evaluate the cost function z and calling CPLEX 11.0 solver in Matlab environment.

We consider discrete capacity levels Cmin, Cmin + △, Cmin + 2△, · · · , Cmax, where △ is

assumed to be integer such as 1,2, · · · , and Cmin = C
T
min, Cmax is the minimum capac-

ity level to allow the optimal uncapacitated lot sizing solutions. The problems with

discretised capacity values which are a series of capacitated lot sizing problems can

be solved by polynomial time algorithm and standard MIP solvers. Since the pseudo-

polynomial algorithm is not the focus in this paper, we simply use CPLEX to solve

the individual capacitated lot sizing problems to optimality here. Upon obtaining the

piecewise-linear functions for each discretized capacity level, the optimal capacity and

lot sizing strategy are obtained when the total capacity acquisition and lot sizing cost

reaches minimal. The problem instances are solved on a Pentium 4 PC with 1G RAM,

and the solution is pseudo-optimal.

As mentioned before, for the special case of quadratic capacity acquisition cost

function, the problem P could in theory be handled by Mixed Integer Quadratic Pro-

gramming (MIQP) solver in CPLEX. According to ILOG (2007), even relatively small in-

teger programming models still take enormous amounts of computing time to solve

and it is a very common occurrence with MIPs that the programme runs out off mem-

ory. Indeed this is what we have experienced when we attempted to solve instances

by the CPLEX MIQP solver. All instances run in excess computation time; CPLEX ran

out off memory in the majority of cases. For those instances that reached optimality,

the gap was nearly zero when compared to our discretisation, which needed far less

computational time.

Comparing with the pseudo-optimal solutions, the heuristic solutions are reason-

able since the heuristic algorithm also suggests similar setup numbers and capacity

levels (see Table 1). However, the differences between the solutions are relevant with

the demand pattern. For the constant demand pattern (DP1), the heuristic algorithm

provides the optimal solution. Readers may notice that, for test problem 5 in Table 1,

the gap between the optimal cost and heuristic cost is oddly big comparing with other

test problems. Since one specific example is not representative, we need to find the

average performance of the heuristics algorithm.

We add the randomness of the demand and fixed setup costs from the hypothetical

examples above. The TBO value is generated from a uniform distribution on the interval
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Test Demand Pseudo-optimal Solution Heuristic Solution

Problem TBO Pattern CostSetup Capacity CostSetupCapacity Gap

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 DP1 80000 54 50 80000 54 50 0.00%

2 DP2 86155 38 80 87324 37 83 1.36%

3 Low DP3 87529 36 88 89621 44 89 2.39%

4 DP4 125981 25 166 127893 23 166 1.52%

5 DP5 118319 28 122 126993 29 115 7.33%

6 DP6 83491 37 76 85581 45 63 2.50%

7 DP1 161625 27 100 161625 27 100 0.00%

8 DP2 163045 22 125 164315 22 123 0.78%

9 Medium DP3 162275 23 120 164283 23 119 1.24%

10 DP4 175731 17 166 179342 17 168 2.06%

11 DP5 175556 19 149 178471 16 170 1.66%

12 DP6 163456 23 121 163611 18 151 0.09%

13 DP1 250500 18 150 250500 18 150 0.00%

14 DP2 251456 16 171 252621 16 170 0.46%

15 High DP3 249664 15 183 250772 15 181 0.44%

16 DP4 253550 14 195 260615 12 226 2.79%

17 DP5 253191 14 196 255037 15 181 0.73%

18 DP6 250685 18 155 251361 18 151 0.27%

Table 1: Comparison of heuristic and pseudo-optimal solutions for our standard test
problems
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[1,3] for low TBO values, the interval [2,6] for medium TBO values and [5, 10] for high

TBO values. Additionally, a random factor εt ∼ U[0.5,1.5] is added to the demand,

and thus, dt = βt ∗ (d̄) ∗ εt . Maintain the cost data same as described above and

run the code iteratively (i.e. 10 iterations). There are multiple instances for each TBO

and demand pattern combination generated and solved. We calculate the average gaps

between the heuristic and optimal solutions. The results are presented in Table 2.

TBO=Low TBO=Medium TBO=High

Demand CPU time (s) CPU time(s) CPU time(s) Average

Pattern Gap Opt Heur Gap Opt Heur Gap Opt Heur Gap

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

DP1 1.01% 1590 1.2 0.76% 4012 1.1 0.88% 3013 1.1 0.88%
DP2 1.50% 1214 1.2 1.59% 3620 1.2 2.35% 3969 1.2 1.82%
DP3 1.79% 1164 0.8 1.69% 3247 0.8 1.05% 1669 0.8 1.51%
DP4 2.46% 3154 0.6 5.23% 3815 0.6 6.11% 1766 0.6 4.60%
DP5 4.76% 2264 1.3 5.09% 4140 1.2 4.47% 3896 1.3 4.77%
DP6 2.05% 388 1.1 3.56% 1326 1.1 2.49% 1333 1.3 2.70%

Average 2.26% 1629 1.0 2.99% 3360 1.0 2.89% 2607 1.0 2.71%

Table 2: Average gaps between the heuristic and pseudo-optimal solutions and corre-
sponding CPU computation times

The results indicate that the heuristic algorithm performs effectively and efficiently.

First, the gaps between the heuristic and the pseudo-optimal solutions are very small

with an overall average gap of 2.71%; this is acceptable given the extremely short com-

putational times of around one second. Second, under the different demand patterns,

the average gap does not vary dramatically. For the constant demand pattern, the av-

erage gap is the least, about 1% or less. For the holiday demand scenarios, the average

gaps are higher but remains below 5% (see column 11 in Table 2).

6 Conclusion

In this paper, we consider the capacitated lot-sizing problem with capacity acquisi-

tion. We develop an efficient heuristic that solves the capacity acquisition, production,

inventory decisions simultaneously with a complexity of O(T 3 logT). Our numerical

study shows that our heuristic algorithm performs well while using substantially less

time compared to pseudo-optimal approach where the potential capacity space is dis-

cretized, while losing only a modest amount of accuracy.
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Our algorithm can serve as a building block for more sophisticated problems in-

volving capacity-acquisition and dynamic lot-sizing decisions. Given that the demand

for a firm’s product is often affected by its pricing decisions, our future research

will consider price-dependent demands. Additionally, more realistic problem settings,

for instance, multiple stage production or multiple product lot-sizing and capacity-

acquisition should also be investigated. However, we would like to note that many

extensions that aim to reflect better that reality might make the mode easier to solve.

For example, if a only a discrete number of potential capacity choices are under con-

sideration, the problem becomes as easy as solving a capacitated lot-sizing problem for

each of these choices. If cost is piecewise linear, one would need to solve for each of

the intervals, compare the solution to the start and end value of the interval and pick

the best solution overall.

While this study effectively solves the capacity-acquisition and lot-sizing problem,

it is based on deterministic demand and constant capacity assumptions. A promising

avenue of future research would be taking into consideration demand uncertainty and

time-varying capacity. Under stochastic demands, the phenomenon of demand short-

age as well as service level constraint should be addressed as well. It might also be

fruitful to analyze the problem and develop algorithms based on nonlinear production

and inventory cost, or time varying fixed setup costs. In addition, as a future direc-

tion of research it would be very interesting to look into the capacity-acquisition and

lot-sizing problem in a competitive environment.
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