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Abstract

Lot-sizing and capacity planning are important supply chain decisions, and com-

petition and cooperation affect the performance of these decisions. In this paper,

we look into the dynamic lot sizing and resource competition problem of an in-

dustry consisting of multiple firms. A capacity competition model combining the

complexity of time-varying demand with cost functions and economies of scale

arising from dynamic lot-sizing costs is developed. Each firm can replenish inven-

tory at the beginning of each period in a finite planning horizon. Fixed as well as

variable production costs incur for each production setup, along with inventory

carrying costs. The individual production lots of each firm are limited by a con-

stant capacity restriction, which is purchased up front for the planning horizon.

The capacity can be purchased from a spot market, and the capacity acquisition

cost fluctuates with the total capacity demand of all the competing firms. We solve

the competition model and establish the existence of a capacity equilibrium over

the firms and the associated optimal dynamic lot-sizing plan for each firm under

mild conditions.
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1 Introduction

One of the fundamental problems in operations management is determining the invest-

ment in capacity. A firm’s capacity determines its maximal potential production. To

acquire capacity is usually cost and time consuming, and once the investment is made,

the cost is often partially or completely irreversible, as installed capacity is difficult to

adjust in the short term. Moreover, the decision on how much capacity to acquire also

strongly influences the action space for future operations planning. To invest in too

much capacity wastes resources that could be used for other important operation ac-

tivities, such as new product development and marketing; to invest in too little capacity

means long waiting times, missed sales opportunities and lost revenue. Therefore, it

is necessary to find an effective and comprehensive method to determine the proper

capacity configuration for operations.

Increasing the capacity does not necessarily improve the operational performance,

even if the product profit margins are large, because capacity acquisition cost is usu-

ally negative correlated to the production cost and often affected by the competitive

resource environment. In addition, the competitors’ other decisions, such as the tim-

ing of production and quantity, also affect capacity acquisition cost and investment

performance. Game theoretic modelling has been an effective method of describing

and solving competition problems. In this paper, we solve a game-theoretic model of

capacity competition problem over a finite-period planning horizon for a multiple-firm

industry that uses a common resource to produce its products. For each firm, its best-

response problem is a single-item capacity acquisition and lot-sizing problem.

The best-response problem considers a single-production facility that produces a

single product item to satisfy a deterministic demand stream. The best-response prob-

lem for individual firms simultaneously determines an optimal capacity and a lot size

plan over the planning horizon. The capacity acquisition, production and inventory

holding costs are considered. We formulate the problem as a cost minimizing Mixed In-

teger Non-Linear Programming (MINLP) model. This general problem class is impossible

to solve using a polynomial time algorithm. Thus, we discretize the possible capacity

choices and solve it for each of those. The major difference between the best response

problem and the classical capacitated lot-sizing problems is that the capacity level is

an internal decision in our model.

Given the capacity competition model, we discuss the capacity equilibrium and

associated optimal dynamic lot-sizing plans by analyzing the resulted best-response

problem. We introduce an approximation for a firm’s best response function, showing

through a numerical study that its use results in only a minor difference to the actual
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cost figures but still has desirable properties. We then proceed to analyze the competi-

tive problem and show the existence of an equilibrium under modest assumptions. To

the best of our knowledge, this is the first study to address lot-sizing problems consid-

ering resource competition. Moreover, since the complexity of the capacity competition

problem, the approximated solutions are acceptable in practice.

The remainder of this paper is organized as follows. We review the relevant stud-

ies in Section 2. Section 3 introduces the relevant notation and the basic competitive

model. Section 4 first describes the best-response problem that an individual firm faces

when making its purchasing and lot-sizing decisions. In Section 5, we show our sug-

gested solution in a structure of the game which results in an equilibrium following a

standard procedure. Finally, a computational study and numerical examples are dis-

cussed in Section 6.

2 Literature Review

The aim of capacity–acquisition decisions is to select the proper capacity that not only

satisfies demand completely, but also minimizes the total capacity acquisition and lot-

sizing cost. The research on capacity investment problems includes two main streams,

the traditional mathematical programming models and the economic models.

Traditional mathematical programming methods have been applied to capacity-

acquisition problems ever since research efforts first took notice of them. The flexible

capacity investment and management problems arose and were addressed at a rela-

tively early stage. Fine and Freund (1990) present a two-stage stochastic programming

model and an analysis of the cost-flexibility trade-offs involved in the investment in

product-flexible manufacturing capacity for a firm. They address the sensitivity of the

firm’s optimal capacity investment decision to the costs of capacity, demand distribu-

tion and risk level. Also, van Mieghem (1998) studies the optimal investment problem

of flexible manufacturing capacity as a function of product prices, investment costs

and demand uncertainty for a two-product production environment. He suggests find-

ing the optimal capacity by solving a multi-dimensional news-vendor problem assum-

ing continuous demand and capacity. Netessine et al. (2002) propose a one-period

flexible-service capacity optimization and allocation model taking the capacity acquisi-

tion, usage, and shortage costs into account. While each paper considers the multiple

products and multiple resources problems with demand uncertainties, their focus is

limited to single-period models.

Apart from the studies which focus on flexible capacity investment, many efforts to

solve generalized capacity-investment problems have also been made. Harrison and van
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Mieghem (1999) develop a single-period planning model to incorporate both capacity

investment and production decisions for a multiple-product manufacturing firm. Their

study yields a multi-dimensional descriptive model generated from the “news-vendor

model”, and gives qualitative insights into real-world capacity-planning and capital-

budgeting practices. Nevertheless, the decisions on optimal capacity investment are

highly generalized, and the production plan decisions are not explicitly presented. van

Mieghem and Rudi (2002) extend the work of Harrison and van Mieghem (1999) to

include an operations environment with multiple products, production processes, stor-

age facilities and inventory management. Moreover, they investigate how the structural

properties of a single period extend to a multi-period setting. They also improve previ-

ous studies by considering some inventory-management issues.

Many studies have made extensive use of game theoretic models in the develop-

ment of product pricing and competitive strategic investment models, among others.

For instance, van Mieghem (1999) uses a game-theoretic approach to model the coordi-

nation process of simultaneous investment, production, and subcontracting decisions.

The model’s objective is to maximize the overall supply chain system profit and to

analyze the size and timing of capacity investment. While capacity acquisition prob-

lems have been studied extensively, each paper mentioned above focused on single-

firm operations. The competition for resources, however, is a common phenomenon

in real-world operations in a multi-firm industry involving a particular product but is

generally ignored in the literature because it often increases the intractability of the

models, regardless of whether the model is stochastic or game theoretic.

Increasing global competition and cost pressure force businesses to discover unde-

tected cost-saving potentials on investment in resources. Arnold et al. (2009) presents

a deterministic optimal control approach optimizing the procurement and inventory

policy of a company that is processing a raw material when the purchasing price, hold-

ing cost, and the demand rate fluctuate over time. However, they do not consider the

effect of resource competition.

The three papers listed below address capacity decision problems emphasizing real-

world capacity competition. Roller and Sickles (2000) propose a two-stage pricing and

capacity-decision model considering price and capacity competition simultaneously. In

the first stage, the capacity is determined and a price-setting game is performed in the

second stage. Chen and Wan (2005) also study a service capacity competition problem

for two make-to-order firms that are modeled as single-server queueing systems. They

characterize the Nash equilibrium of the competition. The firms make their capacity

choice based on the equilibria. Cheng et al. (2003) study the price and capacity com-

petition of two application-service providers. The authors suggest that the providers
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with higher capacity would charge a higher price and enjoy a larger market share. Al-

though capacity competition problems have not completely escaped notice, the afore-

mentioned studies focus strictly on service industries modeled as queueing systems.

The special operations nature of the service industry restricts the methods from be-

ing generalized to other industries, such as manufacturing or other more complicated

service systems.

While great progress has been made in the development of capacity-investment

models and approaches, most studies have focused on macro analysis rather than prac-

tical applications. Many complicated decision factors, such as time-varying costs and

inventory management, have been left unconsidered. In this sense, lot-sizing meth-

ods can compensate perfectly for this deficiency in the game theoretic models, with

the combination approach resolving the real-world capacity-investment and production

problems more realistically.

Lot-sizing problems have been studied extensively for the past half century. Wagner

and Whitin (1958) give a forward algorithm for a general dynamic version of the unca-

pacitated economic lot-sizing model. Since then, various variants, including single-item

and multi-item, uncapacitated and capacitated lot-sizing problems, remain an impor-

tant topic in Operations Research fields. More recent results include Federgruen and

Tzur (1991), who consider a dynamic lot-sizing model with general cost structure. The

authors give a simple forward algorithm which solves the general dynamic lot-size

model in O(T logT) time and with O(T) space requirement. This is an important im-

provement over the well-known shortest path algorithm solution in O(T 2) space, ad-

vocated previously. Wagelmans et al. (1992) extend the range of allowable cost data

to allow for coefficients that are unrestricted in sign. They developed an algorithm to

solve the resulting problem in O(T logT) time.

However, the uncapacitated lot-sizing problem is an ideal case and hardly applicable

to real-world operations. Capacity constraints always heavily influence production-

plan decision making. Furthermore, the general capacitated lot-sizing problem is NP-

hard, see Bitran and Yanasse (1982). For the special case of a constant limit over our

decision period, a number of efficient algorithms are capable of calculating an optimal

production plan. For example, Florian and Klein (1971) present an algorithm with the

computational complexity (O(T 4)) for the capacitated lot-sizing problem with constant

capacity limits, exploring the important properties of an optimal production plan, the

optimal plan consisting of a sequence of optimal sub-plans. Baker et al. (1978) discover

some important properties of an optimal solution to the problem when the production

and inventory-holding costs are constant.
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Some studies have tried to relax the strict cost-structure restrictions in the algo-

rithms reviewed above. Kirca (1990) presents a dynamic programming-based algorithm

with the computational complexity of O(T 4), and Shaw and Wagelmans (1998) develop

a dynamic programming algorithm for the capacitated lot-size problem with general

holding costs and piecewise linear production costs. The algorithm of the latter reduces

the computation time to O(T 2d), where d is the average demand when production cost

is linear. Akbalik and Penz (2009) study a special case of the capacitated lot sizing

problem (CLSP) where the production cost is assumed to be piece-wise linear with dis-

continuous steps. They propose an exact pseudo-polynomial dynamic programming

algorithm which makes it NP-hard in the ordinary sense.

All the studies mentioned above address capacity competition, capacity investment

and lot-sizing problems individually. The implications of combining these problems

are, however, rarely discussed. An exception, Atamturk and Hochbaum (2001), stud-

ies capacity acquisition, subcontracting, and lot-sizing integrally. Although their ap-

proach makes the production plan and capacity acquisition decisions simultaneously,

the authors simply discuss some special cases of production and holding-cost struc-

ture. Moreover, the study still focuses on solving a series of capacitated lot-sizing

problems discretely, causing the computational complexity to increase exponentially

with the number of planning periods and demands. Additionally, Ahmed and Garcia

(2004) study a dynamic capacity-acquisition and assignment problem in a simplified

operations setting to determine the resource capacity and allocation of the resources

to tasks. The study actually proposes a capacity-expansion and planning approach

without considering inventory carryover and the determination of production plans.

In summary, while the progress has been made investigating the questions of ca-

pacity acquisition decisions and lot-sizing separately, few results are available that

address strategies that jointly optimize capacity acquisition and lot-sizing decisions

under a competition environment.

3 The Competition Model and Notation

We consider an industry with N firms, and each produces a single item. Their pro-

ductions require a common resource, measured here by capacity. The capacity level

purchased by a firm is assumed to be the capacity restriction in a dynamic lot-sizing

setting. Examples for this include the number of trucks to lease or a scarce raw mate-

rial. The firms have to purchase the capacity at the beginning of the planning horizon

and can then use the capacity in each following period. The capacity must satisfy the
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demand constraints, and the excess capacity will be disposed of without extra disposal

costs.

The production plan will be considered in a planning horizon of T periods. If the

firms face a natural selling season to introduce a new model or variant, a natural choice

of T arises, e.g. T = 52 weeks in the automobile manufacturing industry operating with

a weekly production and sales schedule. Otherwise, T is chosen to be large enough to

ensure that the firms’ decisions pertaining to the initial periods of the planning hori-

zon are not affected by this truncation of the planning process. We use the following

indices:

i = 1, . . . , N , the index for each firm in the industry;

t = 1, . . . , T , the index for each period.

Each firm has a demand stream during the planning horizon, known only to the firm

itself and following some predictable seasonality pattern (we present and discuss six

common seasonality patterns in Section 6). Thus, let

dit = the demand faced by firm i in period t, i = 1, . . . , N , t = 1, . . . , T ;

βt = the seasonality factor in period t, t = 1, . . . , T ;

di = the average demand of firm i, i = 1, . . . , N ;

and dit = diβt .

The firms produce their goods via a process that, in principle, allows for inventory

replenishment at the beginning of each period. As in standard dynamic lot-sizing prob-

lems, we assume that fixed as well as variable production costs are incurred as well as

inventory carrying costs, which are proportional to each end-of-the-period inventory.

We assume cost parameters may fluctuate in arbitrary ways, and they are defined as

fit = the fixed setup cost for a production batch delivered to firm i in period t,

i = 1, . . . , N ; t = 1, . . . , T ;

ait = the variable production cost for a unit product in firm i in period t, i =

1, . . . , N ; t = 1, . . . , T ;

hit = the inventory carrying cost for each unit of item i at the end of period t,

i = 1, . . . , N ; t = 1, . . . , T .

At the beginning of each planning horizon, each firm i selects the level of capacity to

acquire, as well as a complete production schedule for the entire planning horizon to

satisfy the given demand stream {dit}. We denote this capacity as
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Ci = the capacity acquired by firm i.

We assume that the capacity in question is traded on a spot market. The market price

for a unit of capacity is relevant with the demand of the firm and its competitors for

capacity. We denote the market price as p and assume it is convex in capacity. For

example, a simple linear form capacity acquisition cost can be modelled as below:

p = Λ+ θ
N∑

i=1

Ci (1)

where Λ and θ are non-negative constants known to all players.

Note that this cost of capacity p affects the profits earned by all firms in the indus-

try, as the capacity acquisition is a cost factor in each firm’s profit function. At the

same time, the production schedule selected by firm i affect only its own profit mea-

sure. It is thus possible to conceptualize the competitive model as a single-stage game

between N firms, in which each firm makes a single competitive choice, i.e. the capacity

level to acquire in each season. The game is characterized by the cost functions below,

where −i refers to the competitors of the firm i in the industry.

πi(Ci|C−i) = the cost incurred by firm i under choice of capacity Ci, assuming firm

i adopts an optimal dynamic lot-sizing schedule to respond to its own de-

mand stream, and given that the competitors choose to purchase the capac-

ities C−i = {C1, . . . , Ci−1, Ci+1, . . . , CN}.

For ease of exposition, we rewrite this function as follows:

πi(Ci|C−i) = pCi +Ki(Ci)

= Ci


Λ+ θ

N∑

i=1

Ci


+Ki(Ci), i = 1, . . . , N

= Ai(Ci|C−i)+Ki(Ci)

(2)

where A(Ci|C−i) denotes the acquisition cost of capacity, and Ki(Ci), the minimum

total operating costs for firm i to serve the demand under the capacity level Ci.

In the competition model, we assume that the firms know about the total number of

firms N , and be able to observe the rival firms’ decisions on capacity acquisition levels.

In addition, the prices of the product produced by different firms are assume to be

same and constant over the entire planning horizon. Therefore, the profit maximizing

objective is equivalent to the cost minimizing objective. In the rest of the paper we use

the cost minimizing objective function.
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Knowledge of the cost function Ki(Ci) is important to be able to analyze the compe-

tition model and characterize its equilibrium behavior. However, difficulty arises from

the fact that the function Ki(Ci) cannot be represented in a closed analytical form.

We will deal with this problem in the Subsection 5.1. Under the assumption that the

firm has knowledge of its function Ki(Ci) and given that the firm knows its competi-

tors’ capacity choices C−i, the best response problem (function) of the firm can then be

expressed as:

Ci∗(C−i) = arg min
Ci
πi(Ci|C−i) (3)

Before providing a complete characterization of the industry’s equilibrium behavior,

we first analyze an individual firm’s best-response problem in the following Section.

4 Best Response Problem

Given the capacity decisions of other firms, a firm i has to determine its own capacity

acquisition level and a corresponding lot sizing plan so that the total cost is minimized.

Here, the defined lot-sizing and capacity acquisition problem is the best response prob-

lem of firm i. In this section, we analyze firm i’s best response problem (3), which is

crucial to describe the industry equilibrium.

4.1 Formulation

In order to model the best response problem, we further define the following decision

variables:

xit = the production quantity of product i, i = 1, · · · , N produced in period t,

t = 1, . . . , T ;

yit =




1 xit > 0

0 otherwise
;

Iit = the inventory amount of product i, i = 1, · · · , N at the end of period

t, t = 1, . . . , T .

This gives rise to the following formulation of the best response problem Pb of a firm:

Pb : πi(Ci|C−i) = min



T∑

t=1

(aitxit + hitIit + fityit)+Ai(Ci|C−i)


 , i = 1, · · · , N (4)
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subject to

Iit = xit − dit + Iit−1, ∀ t = 1, . . . , T (5a)

xit ≤ C
max
i yit, i = 1, · · · , N, ∀ t = 1, . . . , T (5b)

xit ≤ Ci, i = 1, · · · , N, ∀ t = 1, . . . , T (5c)

Ii0 = IiT = 0, i = 1, · · · , N (5d)

xit ≥ 0, Iit ≥ 0, yit ∈ {0,1} , Ci ≥ 0, ∀ t = 1, . . . , T , i = 1, · · · , N. (5e)

where the objective function (4) minimizes the production and inventory-holding costs

as well as the capacity acquisition costs. Constraints on the problem include: Equa-

tion (5a) ensures that inventory is balanced; Production is restricted by (5b) and (5c),

where Cmax
i is the minimum capacity which allows the optimal uncapacitated lot size

plan; Constrains (5d) set initial and final inventories to zero; and the bounds of the

variables are restricted by (5e). Solving the model entails simultaneously determining

the optimal capacity, setup periods, and production amount in each order period. Ca-

pacity is assumed to be a continuous variable, meaning that capacity can be acquired

at any non-negative level. If it is assumed that the firms observe their competitors ca-

pacity decisions, the best response problem can be solved according to the analysis in

following subsection.

4.2 Calculation of the optimal capacity and lot sizes

The simultaneous calculation of the optimal capacity and production plan, as explained

above, is a MIP model Pb with quadratic objective function but with all constraints as

linear. This problem class is generallyNP-hard according to Garey and Johnson (1979)

and Poljak and Wolkowicz (1995). While the general capacitated lot-sizing problem is

NP–hard (see Bitran and Yanasse (1982)), polynomial time algorithms are available in

the special case of a given constant capacity. For example, Florian and Klein (1971)

suggest an O(T 4) algorithm, and alternative approaches are also suggested by van Hoe-

sel and Wagelmans (1996) and Chen et al. (1994) that run in O(T 3) time. Therefore,

the problem Pb can be solved by discretizing the interval of potential values for the

capacities and solving for each of those values. Consequently, the best response prob-

lem is not NP-hard in the strong sense, and in principal, it can therefore be solved in

pseudo-polynomial time.

While a commercial package such as CPLEX can in theory handle the best response

problem as described above with a quadratic objective and linear constraints, compu-

tational times on a HP 2.0 GHz with 1 GB memory were typically in excess of a few
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hours for our examples as described in Section 6 and the optimizer even often ran out

of memory and delivered no result. Therefore, in this paper, we discretize the potential

capacity space and evaluate the total cost function πi(Ci|C−i) at each point to find the

optimal solution of the problem Pb under the assumption that the variable of capacity

is continuous. For each potential capacity value, we find the best capacitated lot-sizing

replenishment plan by a standard MIP solver such as CPLEX. We then pick the capac-

ity resulting in the least sum of capacity acquisition cost and cost resulting from the

capacitated lot-sizing production plan.

First, we need to determine the possible capacity range of each firm. The range is

defined by an integer lower bound Cmin
i that allows a feasible solution of the best re-

sponse problem and an integer upper bound Cmax
i . They can be calculated as described

below:

Cmin
i = max

t=1,...,T

{
Di(t)

t

}
, i = 1, ·, N (6)

where Di(t) =
∑t
j=1dij . The upper bound Cmax

i can be determined by solving the un-

capacitated lot-sizing problem, and it can be calculated by the classic Wagner-Whitin

algorithm or by other algorithms proposed by Federgruen and Tzur (1991) and Wagel-

mans et al. (1992). Cmax
i equals the maximum lot size over the planning horizon. If

capacity increases up to Ci > C
max
i , the lot-sizing cost is no longer decreasing, and the

capacity acquisition cost is increasing. Thereby, π(C) > π(Cmax
i ), when Ci > C

max
i , and

the firm will not ever be better off by acquiring a capacity level Ci > C
max
i . Therefore,

it is not necessary to consider the capacity values which are greater than Cmax
i . In the

remainder of the paper, we focus our analysis on the range [Cmin
i , Cmax

i ].

Next, given the capacity decisions of other competing firms’ C−i, we consider each

integer capacity level Ci = C
min
i , Cmin

i +△, Cmin
i + 2△, · · · , Cmax

i , where △ is assumed

to be an integer such as 1,2, · · · , and apply a standard solver to solve the capacitated

lot-sizing problem so that the optimal capacity level and lot-sizing plan are obtained

over all the capacity levels. Given the unit increment of capacity level, it is reasonable

to assume the total cost of a firm is piece-wise linear function in capacity.

Upon the obtained piecewise-linear functions for each discretized capacity level, the

pareto-optimal capacity is obtained when the total capacity acquisition and lot-sizing

cost reaches the minimal. Furthermore, the cost function Ki(Ci) has following property

in Proposition 1.

Proposition 1 Given the other competing firms’ capacity decisions C−i, the lot sizing and

capacity acquisition cost function Ki(Ci) of firm i is non-increasing and quasi-convex in

its own capacity level Ci .
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Proof: With respect to the best response problem Pb, all constraints are linear, and

thus, constraint set is concave. Suppose there exist two capacity levels C1
i < C

2
i , and

C1
i , C

2
i ∈ [C

min
i , Cmax

i ], because Ki(Ci) is non-increasing in Ci, we have

Ki(αC
1
i + (1−α)C

2
i ) ≤max{Ki(C

1
i ),Ki(C

2
i )} (7)

where α ∈ [0,1], and thus, Ki(Ci) is quasi-convex in Ci, since a firm’s lot sizing cost

will not be affected by other firms’ capacity decisions, we can also see Ki(Ci) is quasi-

convex in its own capacity level Ci. �

We have conducted an extensive numerical study to illustrate the property. For an

illustration of Proposition 1, see Figure 1 selected from a numerical example discussed

in Section 6. We also present an example of total cost curve in Figure 1 over the capacity

range [Cmin
i , Cmax

i ], which is selected from a numerical example discussed in Section 6.
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Figure 1: An illustration of convexity on cost function in capacity increase

A sufficient condition for the existence of an equilibrium is from Theorem 2.1 in

Vives (1999) — originally attributed to Debreu (1952): the strategy sets are convex and

compact, and the payoff to firm i is continuous in the actions of all firms and quasi-

concave in its own control variable. Since we exclusively deal with cost in this paper,

the profit function is just the negated cost function and hence concave in the control

variable, namely the capacity choice. However, the quasi-convexity and continuity of

each firm’s total cost function in our capacity competition game cannot be guaranteed,

and therefore, we are not able to show any explicit equilibrium results of the firms.
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5 Equilibrium analysis

In order to address the competition problem, we first introduce an approximation of

lot-sizing cost function K̃i(Ci). We show that the approximation indeed results in val-

ues very close to the actual cost function and then proceed to investigate the equilib-

rium behavior.

5.1 Approximation of lot-sizing cost

According to Proposition 1, the lot sizing cost function Ki(Ci) is non-increasing and

quasi-convex, but this does not suffice to establish equilibrium behavior. Therefore,

we seek to approximate the lot sizing cost function by a convex function. Ubhaya

(1979) provides an algorithm to find the optimal approximation convex function of a

quasi-convex function. Because the approximation process is not our focus, in analogy

to Federgruen and Meissner (2009), we apply an approximation function model of the

lot-sizing cost Ki(Ci) as below:

Ki(Ci) ∼ K̃i(Ci) = Td
2

i

[
ηi +

ζi

(Ci)γ
i

]
, i = 1, . . . , N, Ci ∈ [C

min, Cmax]. (8)

where ηi, ζi > 0 and γi > 0 are appropriate constants. Since the function K(Ci) has no

closed form, we consider the discrete function values in the valid domain [Cmini , Cmaxi ],

and apply the idea of least square curve fitting method to determine the parameters

of the approximation function K̃i(Ci) which minimizes the sum of squared differences

between the left and the right sides of equation (8).

In order to estimate the approximation function more accurately, we calculate the

constants of the approximation function based on different demand seasonality pat-

terns and fixed setup cost levels. Assuming that firm i faces a planning horizon of

T periods, and the demand behaves according to dit = βtd̄i, six seasonality patterns

{βt : t = 1, . . . , T} are typical in reality as follows. The first pattern reflects a situation

where demand functions are time-invariant. The second pattern shows one with linear

growth, while the third shows linear decline. The fourth and fifth patterns represent

a planning horizon with a single season of peak demands either at the beginning or

at the end of the planning horizon. The last pattern (VI) is cyclical with a cycle length

of six periods, such that demands in the two middle periods of each cycle are 7 times

their value in the first and last period, while βt = 1 in the remaining two periods of the

cycle.

(1) Time-invariant demand functions: βt = 1; t = 1, . . . , T

http://www.meiss.com/
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(2) Linear Growth: βt = β0 + (βT − β0)
(t−1)
T−1 ; t = 1, . . . , T .

where β0 is the base seasonality factor. We take example of β0 = 0.25, and then

according to
∑T
t=1 βt = T , T = 54, βT can be calculated as 1.75. Therefore, we have

linear growth seasonality pattern βt = 0.25 + 1.5 (t−1)
T−1 ; t = 1, . . . , T . Similarly,

other parameter sets could be derived and applied, but the results of our model

will not be affected.

(3) Linear Decline: βt = βT − (βT − β0)
(t−1)
T−1 ; t = 1, . . . , T .

Analogous with seasonality pattern (II), let β0 = 0.25, and we obtain βt = 1.75 −

1.5 (t−1)
T−1 ; t = 1, . . . , T .

(4) Holiday Season at the Beginning of the Planning Horizon:

βt =




β0 +
Pβ0

L/2−1w (t − 1) , t = 1, . . . ,L/2

(1+P)β0 −
Pβ0

(L/2−1)(t − 1−L/2) , t = L/2+ 1, . . . ,12

β0 , t = L+ 1, . . . , T

(9)

where L represents the length of the peak season, and P describes the degree of

peak seasonality factor over base, and for example, if P = 10, the highest demand

is 10 times of the base demand. Based on the condition
∑T
t=1 βT = T , we have

β0 =
T

T+LP2
. Let L = 12, P = 10; we obtain the exact holiday seasonality pattern

formula as below.

βt =




54
114 +

540
570(t − 1) , t = 1, . . . ,6

594
114 −

540
570(t − 7) , t = 7, . . . ,12

54
114 , t = 13, . . . , T

(10)

(5) Holiday Season at the End of the Planning Horizon:

βt =




β0 , t = 1, . . . , T −L

β0 +
Pβ0

(L/2−1)(t − T +L− 1) , t = T −L+ 1, . . . , T −L/2

(1+P)β0 −
Pβ0

(L/2−1)(t − T +L/2− 1) , t = T −L/2+ 1, . . . , T

(11)
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Similarly with seasonality pattern (IV), we apply the seasonality pattern (V) as

follows:

βt =




54
114 , t = 1, . . . ,42

54
114 +

540
570(t − 43) , t = 43, . . . ,48

594
114 −

540
570(t − 49) , t = 49, . . . , T

(12)

(6) Cyclical Pattern:

βt =




β0 +
(P−1)β0

L/2−1 (t − 1) , t = 1, . . . ,L/2

Pβ0 −
(P−1)β0

L/2−1 (t −L/2− 1) , t = L/2+ 1, . . . ,L

βtmod6 , t = L+ 1, . . . , T

(13)

where tmod6 denotes t modulo 6. In this case, L represents the cycle length, and

P denotes the multiplier of peak demand over base demand. Let L = 6, P = 7 in

this paper, and then it is calculated β0 = 0.25. we obtain

βt =




0.25+ 0.75(t − 1) , t = 1, . . . ,3

1.75− 0.75(t − 4) , t = 4, . . . ,6

βtmod6 , t = 7, . . . , T

(14)

Assuming that the setup, production and inventory costs, and capacity acquisition

costs are identical, the values of Ki(Ci) are displayed as a function of feasible capacity

levels for the six demand patterns (DP) in Figure 2a and 2b.
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Figure 2: Ki(Ci) as function of capacity in the six demand patterns
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Not surprisingly, the total cost curves differ in demand seasonality pattern. There-

fore, it is necessary to estimate the constants of the approximation function with re-

spect to each seasonality pattern. Furthermore, we distinguish three levels of the fixed

setup cost (expressed by Time Between Orders (TBO), see further definition in Section

6) and investigate the final form of an approximation function.

We first pick production cost ait = 15; inventory holding cost hit = 5; and TBO=[High,

Medium, Low] for three firms i = 1,2,3, t = 1, · · · , T ; and average demand di =

[12,10,8] for three firms i = 1,2,3. Given the identical cost parameters and season-

ality patterns, the firms have the same lot-sizing costs Ki(Ci). Similarly, for the time-

varying production and inventory holding cost cases, the approximation curve can also

be estimated. Table 1 below exhibits the parameters generating the best possible fit:
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Demand d̄i = 12 d̄i = 10 d̄i = 8

TBO Pattern γi ηi ζi Gap γi ηi ζi Gap γi ηi ζi Gap

1 0.13 0.00 2.44 0.91% 0.13 0.00 3.46 1.04% 0.14 0.00 4.94 1.18%

2 5.43 1.56 1872426.80 2.02% 6.47 2.24 13947232.29 1.15% 5.40 3.19 431745.19 2.15%

Low 3 0.98 1.51 2.11 0.04% 0.89 2.14 2.10 0.03% 3.73 3.05 108125.05 0.24%

4 4.53 1.51 3817067.85 0.20% 4.64 2.14 3817067.77 0.20% 2.05 2.76 698.58 0.61%

5 2.07 1.38 751.10 0.55% 2.06 1.93 754.01 0.55% 2.05 2.76 698.58 0.61%

6 5.45 1.55 633533.15 0.81% 5.37 2.27 336052.83 0.72% 5.45 3.18 150305.24 0.86%

Average 0.76% 0.62% 0.94%

1 1.34 2.19 90.60 1.03% 1.35 3.16 106.11 1.08% 1.33 4.59 113.53 1.15%

2 2.54 2.55 2671.83 1.38% 2.43 3.68 1937.12 1.21% 2.55 5.43 2221.59 1.47%

Medium 3 1.91 2.39 460.90 0.51% 1.97 3.48 573.76 0.51% 1.70 4.89 277.53 0.74%

4 2.76 2.44 13975.71 0.21% 2.78 3.53 13547.23 0.23% 2.76 5.17 10457.31 0.23%

5 1.94 2.33 891.18 1.16% 1.94 3.37 954.06 1.21% 1.94 4.93 928.38 1.20%

6 1.50 2.21 143.62 0.98% 1.52 3.28 184.11 0.88% 1.50 4.65 178.60 1.07%

0.88% 0.85% 0.98%

1 1.24 2.77 201.22 1.27% 1.25 4.06 244.10 1.24% 1.24 5.94 273.13 1.30%

2 1.61 3.26 578.43 1.02% 1.58 4.73 601.15 1.05% 1.63 7.06 700.54 1.03%

High 3 1.53 3.08 473.31 0.99% 1.57 4.53 604.37 0.98% 1.57 6.73 637.26 1.22%

4 1.95 3.25 2365.37 0.53% 1.94 4.75 2447.68 0.54% 1.95 7.00 2439.81 0.55%

5 1.64 3.20 782.33 1.27% 1.64 4.67 875.05 1.30% 1.64 6.89 926.30 1.27%

6 1.41 2.97 331.14 2.04% 1.40 4.40 384.66 1.98% 1.42 6.40 426.27 2.08%

1.19% 1.18% 1.24%

Table 1: Approximating curves for demand patterns (I) to (VI)
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The columns of “Gap” in Table 1 display the average relative difference between

the exact and the approximate curve. The narrow gaps indicate that approximations of

the type (8) are very close for any combination of fixed setup cost levels and season-

ality patterns. In addition, the performance of the approximation function is relevant

with the capacity incremental value ∆. The smaller of ∆, the closer the approximation

function is to the actual lot sizing and capacity acquisition cost curve.

5.2 Existence of Equilibrium, Uniqueness and Convergence

Treating the capacity Ci as continuous variable, and substituting the cost function

Ki(Ci) by the close approximation function (8), the total lot-sizing and capacity ac-

quisition cost function πi(Ci|C−i) can be expressed as

πi(Ci|C−i) ∼ π̃i(Ci|C−i) = K̃i(Ci)+Ai(Ci|C−i)

= Td
2

i

[
ηi +

ζi

(Ci)γ
i

]
+ (Λ+ θ

n∑

i=1

Ci)Ci, i = 1, · · · , N.
(15)

According to the function (15), we show that

(1) Nash equilibrium exists for the competition game;

(2) The Nash equilibrium is unique, and,

(3) The equilibrium converges by an iterative Tatônnement scheme and can be com-

puted efficiently.

Theorem 1 A Nash equilibrium exists for the competition game.

Proof: Since

∂2π̃i(Ci|C−i)

∂C2
i

= Td
2

i
γi(γi + 1)ζi

(Ci)γ
i+2

+ 2θ ≥ 0, i = 1, · · · , N. (16)

Therefore, the approximation payoff function is continuous in the actions of all firms

and convex in its own control variable. In addition, the strategy sets are convex and

compact, so the conclusion holds. �

Theorem 2 The (approximate) cost functions π̃i(Ci|C−i) satisfies the dominance condi-

tion

∂2π̃i(Ci|C−i)

∂C2
i

≥
∂2π̃i(Ci|C−i)

∂Ci∂Cj
, i ≠ j, i, j = 1, · · · , n (17)
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Therefore, the Nash equilibrium is unique.

Proof:

∂π̃i(Ci|C−i)

∂Ci
=
∂K̃i(Ci)

∂Ci
+Λ+ θ

N∑

i=1

Ci + θCi, i = 1, · · · , N (18)

Since
∂2K̃i(Ci)

∂C2
i

= Td
2 γi(γi+1)ζi

(Ci)γ
i+2

, and
∂2K̃i(Ci)
∂Ci∂Cj

= 0, we have

∂2π̃i(Ci|C−i)

∂C2
i

= Td
2γi(γi + 1)ζi

(Ci)γ
i+2

+ 2θ ≥ 0

∂2π̃i(Ci|C−i)

∂Ci∂Cj
= θ ≥ 0, i ≠ j, i, j = 1, · · · , N

(19)

Thus,
∂2π̃i(Ci|C−i)

∂C2
i

≥
∂2π̃i(Ci|C−i)
∂Ci∂Cj

, and a unique equilibrium is guaranteed. �

Furthermore, the unique equilibrium can be efficiently computed as the limit point

of the following simple Tatônnement scheme:

Tatônnement scheme: Starting with an arbitrary capacity vector C(0), in the kth itera-

tion of the scheme, each firm determines it capacity C
(k)
i and lot sizes which solves the

best response problem (4). Assume all competing firms’ capacities are set according to

their value in the capacity vector C(k−1).

Convergency of this Tatônnement scheme is guaranteed when the game is supermodu-

lar. Theorem 2 shows that the supermodularity property holds because

∂2π̃i(Ci|C−i)

∂Ci∂Cj
= θ ≥ 0, ∀i = 1, · · · , N. (20)

6 Numerical example

A complete numerical experiment investigating our approach to make capacity acqui-

sition and production decisions with multi-firm capacity competition is performed in

this section. Using different combinations of demand pattern and TBO, we generate a

number (18) of hypothetical test problems. The algorithm on the competition game is

also coded using MatLab and calls for the approximation function of the best response

problem of each firm. The problem instances are solved on a Pentium 4 PC with 1G

RAM.



Li and Meissner: Lot Sizing Competition with Capacity Acquisition 19

Three firm games are set based on the following data: demand di = (8,10,12),

production cost ai = (17,15,13) and inventory holding cost hi = (6,5,4). For the sake

of simplicity and replicability, we use the constant production and inventory holding

costs in the test problems, but it will not be much more difficult to solve the problems

with time varying costs.

Given that the firms produce an identical product, the demand patterns in each

game instance are identical. The hypothetical test problems vary with the combination

of the different demand patterns and fixed setup cost levels. We determine the fixed

setup cost indirectly by first choosing the EOQ-cycle time “Time-between-Orders (TBO)”

=

√
2f

hd
and determine the fixed setup cost fi from this identity. Let TBO value be 2 for

low level fixed setup cost, 5 for medium level fixed setup cost and 8 for high level fixed

setup cost. Finally, let the fixed capacity acquisition cost Λ = 250 and variable capacity

acquisition cost θ = 3.

Based on the approximation results, we calculate each firm’s best response capacity,

cost and lot-sizing plan iteratively according to the Tatônnement scheme, and reach the

equilibrium until not a single firm will deviate further from its decision. The computa-

tional results are presented in Table 2.

Test Demand TBO Capacity Cost

Problem Pattern Level Equilibrium Equilibrium (x104) Setups

(1) (2) (3) (4) (5) (6)

1 DP1 [17;21;25] [1.61;1.79;1.85] [27;27;27]

2 DP2 [29;36;43] [1.93;2.15;2.33] [25;24;24]

3 DP3 [L, L, L] [29;36;43] [2.64;2.18;2.32] [24;24;24]

4 DP4 [43;53;64] [3.08;3.61;3.97] [23;23;23]

5 DP5 [43;53;64] [2.78;3.14;3.35] [24;24;24]

6 DP6 [27;35;40] [1.77;2.04;2.11] [19;19;19]

7 DP1 [41;51;61] [3.58;3.94;4.12] [11;11;11]

8 DP2 [56;70;83] [3.73;4.16;4.31] [11;11;11]

9 DP3 [M, M, M] [56;70;83] [3.76;4.18;4.36] [10;10;10]

10 DP4 [119;148;178] [5.73;6.54;6.99] [10;9;10]

11 DP5 [77;96;115] [4.55;5.05;5.26] [10;10;10]

12 DP6 [51;73;76] [3.76;4.20;4.31] [9;9;9]

13 DP1 [65;81;97] [5.94;6.53;6.79] [7;7;7]

14 DP2 [82;102;122] [6.18;6.88;7.09] [7;7;7]

15 DP3 [H, H,H] [95;106;127] [6.27;6.99;7.25] [6;6;6]

16 DP4 [120;150;179] [7.34;8.22;8.63] [6;6;6]

17 DP5 [180;224;269] [8.31;9.10;9.39] [6;6;6]

Continued on next page–
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Table 2 – continued from previous page

Test Demand TBO Capacity Cost

Problem Pattern Level Equilibrium Equilibrium (x104) Setups

(1) (2) (3) (4) (5) (6)

18 DP6 [89;112;133] [6.35;7.13;7.27] [6;8;7]

19 DP1 [17;51;97] [1.85;4.01;6.01] [27;11;7]

20 DP2 [29;70;122] [2.36;4.23;6.28] [25;11;7]

21 DP3 [L,M,H] [29;70;127] [3.38;4.28;6.27] [24;10;6]

22 DP4 [43;148;179] [4.78;5.77;7.68] [23;9;6]

23 DP5 [43;96;269] [3.98;5.85;6.98] [24;10;6]

24 DP6 [27;73;133] [2.18;4.40;6.31] [19;9;7]

25 DP1 [17;81;61] [1.84;5.78;4.16] [27;7;11]

26 DP2 [29;102;83] [2.33;6.09;4.34] [25;7;11]

27 DP3 [L,H,M] [29;106;83] [3.33;6.04;4.42] [24;6;10]

28 DP4 [43;150;178] [4.79;7.43;6.10] [23;6;10]

29 DP5 [43;224;115] [3.86;6.75;5.96] [24;6;10]

30 DP6 [27;112;76] [2.13;6.09;4.41] [19;8;9]

31 DP1 [41;21;97] [3.61;2.08;5.95] [11;27;7]

32 DP2 [56;36;122] [3.75;2.64;6.21] [11;24;7]

33 DP3 [M,L,H] [56;36;127] [3.81;2.78;6.20] [10;24;6]

34 DP4 [119;53;179] [4.96;5.55;7.45] [10;23;6]

35 DP5 [77;53;269] [5.17;4.51;6.88] [10;24;6]

36 DP6 [51;35;133] [3.85;2.51;6.17] [9;19;7]

37 DP1 [41;81;25] [3.54;5.66;2.16] [11;7;27]

38 DP2 [56;102;43] [3.69;5.97;2.83] [11;7;24]

39 DP3 [M,H,L] [56;106;43] [3.74;5.92;2.94] [10;6;24]

40 DP4 [119;150;64] [4.82;7.04;6.05] [10;6;23]

41 DP5 [77;224;64] [4.98;6.59;4.68] [10;6;24]

42 DP6 [51;112;40] [3.77;5.98;2.57] [9;8;19]

43 DP1 [65;21;61] [5.19;2.04;4.08] [7;27;11]

44 DP2 [82;36;83] [5.42;2.58;4.25] [7;24;11]

45 DP3 [H,L,M] [95;36;83] [5.43;2.75;4.39] [6;24;10]

46 DP4 [120;53;178] [6.55;5.55;5.86] [6;23;10]

47 DP5 [180;53;115] [6.07;4.24;5.72] [6;24;10]

48 DP6 [89;35;76] [5.37;2.43;4.31] [6;19;9]

49 DP1 [65;51;25] [5.14;3.87;2.13] [7;11;27]

50 DP2 [82;70;43] [5.37;4.07;2.80] [7;11;24]

51 DP3 [H,M,L] [95;70;43] [5.38;4.17;2.95] [6;10;24]

52 DP4 [120;148;64] [6.39;5.38;6.03] [6;9;23]

53 DP5 [180;96;64] [6.01;5.41;4.53] [6;10;24]

Continued on next page–
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Table 2 – continued from previous page

Test Demand TBO Capacity Cost

Problem Pattern Level Equilibrium Equilibrium (x104) Setups

(1) (2) (3) (4) (5) (6)

54 DP6 [89;73;40] [5.39;4.21;2.57] [6;9;19]

Table 2: The equilibrium solution of the competition games

In Table 2, Column (3) shows the possible fixed setup cost levels for the three firms.

We consider the instances when the firms have identical TBO levels and different TBO

levels respectively. The results show that the firms choose similar production strategy

when the fixed setup costs are at the same level. However, when fixed setup costs differ

from each other, the firms choose rather different setup policy. In addition, Column

4 represents the firms’ decisions on capacity, and column 5 shows the total costs of

the firms. Column 6 shows the setup numbers of the firms. In general, all instances

converge within a small number of iterations.

7 Conclusion

This paper considers a multiple firm lot-sizing problem with resource competition. We

model and solve the competition game and discuss the equilibrium behaviors of the

firms. As a best response problem of a firm, a typical capacity acquisition and lot-sizing

problem is solved by line search. The algorithm solves the capacity acquisition, pro-

duction, and inventory decisions simultaneously for multiple firms iteratively. In order

to tackle the complexity of dynamic lot sizing problem and potential discontinuity of

its cost function, a close approximation is applied to substitute the dynamic lot sizing

cost. Under the mild conditions, we show the existence and uniqueness of equilibrium,

and furthermore, the equilibrium converges within finite iterations of computation. In

addition, the extension of multiple products share a common resource can be easily

adapted into our method by solving the approximation problem of multiple product

lot sizing problem.

In the present study, we only consider a rather simple structure of the resource

competition and dynamic lot sizing problem. First, the analysis is limited to the de-

terministic supply and demand. This leaves the future research opportunities on the

capacity acquisition and competition problem under random supply and demand un-

certainty. In addition, we only consider a constant capacity setting over the planning
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horizon. It would also be interesting to analyze the time varying capacity situation. If

the capacity can be purchased or disposed of in each period, it could lead to a solution

for a dynamic competition game and the problem would be much more complicated.
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