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Abstract
A fundamental decision every merchant has to make is on is how large his stores should
be. This is particularly true in light of the drastic changes retail concepts have seen in the
last decade. There has been a noticeable tendency, particularly for food and convenience
retailers, to open more and smaller stores. Also, there has been a well-documented
recent shift in paradigm in apparel retailing with the so called fast-fashion business
model. Short lead times have resulted in flexibility that allows retailers to adjust the
assortment of products offered on sale at their stores quickly enough to adapt to popular
fashion trends. Based on revised estimates of the merchandise’s popularity, they then
weed out unpopular items and re-stock demonstrably popular ones on a week-by-week
basis. However, despite the obvious similarity of reliance on better demand learning,
fashion-fashion retailers like Zara have opted to do exactly the opposite as groceries and
opened sizable stores in premium locations. This paradox has not been explained in
the literature so far. In this paper, we aim to calculate the profit of a retailer in such a
complicated environment with demand learning and frequent assortment decisions in
particular in dependence of the most valuable resource of a retailer: shelf-space. To be
able to achieve this, we extend the recent approaches in the management literature to
handle the sequential resource allocation problems that arises in this context with a
concurrent need for learning. We investigate the use of multi-armed bandits to model
the assortment decisions under demand learning, whereby this aspect is captured by a
Bayesian Gamma-Poisson model. Our model enables us to characterize the marginal
value of shelf-space and to calculate the optimal store size under learning and assortment
decisions. An extensive numerical study confirms that the store size choices observed in
real life can be explained by the varying length of selling seasons different retailers face.
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1 Introduction

The question of how big retail premises should be is so fundamental that every merchant

has to face it. It is even more important under the strong competition most retailers face

nowadays. As most of the industry works on razor thin margins, any firm deviating from the

optimal store size for its particular business model will face the danger of reduced profits or

even losses. The problems are even more pronounced in light of the fact that retail concepts

have changed dramatically in the last decade, most notably by incorporating better strategies

to learn about customer demand. On the one hand, there has been a tendency, particularly

for food and convenience retailers, to open more and smaller stores. One of the earliest

examples of this strategy was the now seminal case of 7-Eleven Japan. The company has

opened many small stores in premium locations. This enables them to have location close

to the customers convenience, aside from implementing innovative replenishment solutions.

The ensuing demand is closely monitored and products on sale adjusted, up to the point

that the assortment changes daily to perfectly fit the demand and to make the most use out

of the scarce shelf-space. The strategy has been copied, for example, by Tesco in the United

Kingdom.

A similar trend towards demand learning has taken place in the so called fast-fashion

industry. Implementation of this new fast-fashion paradigm at Zara and others hinges on

merchandize procurement strategies that permit lead times as short as two weeks. The

resulting flexibility allows retailers to adjust the assortment of products offered on sale at

their stores quickly enough to adapt to popular fashion trends. In particular, firms can

choose from a large number of potential styles to produce and offer for sale, and then use

weekly sales data to renew their estimates of specific items’ popularity. Based on such revised

estimates, they then weed out unpopular items, or else re-stock demonstrably popular ones

on a week-by-week basis. In sharp contrast, traditional retailers such as Marks and Spencer

face lead times on the order of several months. As such these retailers need to predict

popular fashions months in advance and are allowed virtually no changes to their product

assortments over the course of an entire sales season, which is typically several months in

length. While providing cost benefits, this approach typically results in substantial unsold

inventories at the end of a sales season while failing to identify other high selling styles. In

view of the great deal of a-priori uncertainty in the popularity of a new fashion and the

speed at which fashion trends evolve, the fast-fashion operations model is emerging as the

de-facto standard operations model for fashion retailers.

However, one could observe that in contrast to the grocery stores mentioned above,

fast-fashion retailers have tended to open bigger stores in high street locations. In this paper,

we set out to explain this phenomenon and develop guidelines for managers having to make
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such decisions. A central aim of the paper is to determine the marginal value of shelf-space,

a quantity of fundamental importance to any retailer operating in such an environment.

We will develop a range of analytical and computational competences which will enable us

to understand how this marginal value declines (as it does) as the store size grows. We

implement numerical studies which lend support to the contention that sectors with more

rapidly changing demand patterns, as evidenced by shorter selling seasons (i.e., fast fashion

rather then groceries), will have larger stores, not least to facilitate rapid demand learning.

The paper is structured as follows: Section 2 contains a review of the related literature.

We present a model for the problem concerning the dynamic assortment of retail products

over a selling season which lies at the heart of the paper in section 3. In section 4 we use

a Lagrangian relaxation of the dynamic assortment problem to develop a product index

to serve as a means of calibrating the strength of a product’s candidature for inclusion in

an assortment. We propose a range of heuristic approaches to the use of these indices to

produce admissible product assortments. In section 5 we report on an extensive numerical

study which explores the closeness to optimality of our heuristic index policies and reports

on how the marginal value of shelf-space (as a function of store size) relates to key problem

features including the length of the selling season. This in turn yields the insights mentioned

in the previous paragraph.

2 Literature Review

We review the literature in four four key areas, each of which plays a significant role in our

models and analyses.

2.1 Assortment Planning

Central to the issues raised in the Introduction is the question of how retailers choose the

assortment of products which they place on sale in their stores. Many publications in the

field of (static) assortment planning formulate the problem as a mathematical program. A

good example is Hariga et al. (2007). They introduced an optimization model for assortment

planning with a focus on the joint consideration of inventory, assortment, shelf space and

display area. This results in a mixed-integer program which can be solved with a commercial

package. Their demand function is designed to incorporate the locational positioning as

well as the shelf space allocated to the product and the cross-product-elasticity. It can be

extended to incorporate the selling price.

A similar approach in terms of decision modeling was followed by Yücel et al. (2009).

Their focus is on substitution effects. These are modeled by redirecting respective portions

of the demand whenever a stock-out is encountered. In their objective function, the authors
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consider half a dozen cost types in order to tailor precisely the total profit, which is to be

maximized. An exceptionally rich source giving an overview of assortment planning and

adjacent topics is the book chapter written by Kök et al. (2008).

2.2 Dynamic Assortment Planning

Fisher and Raman (1996) studied the decisions arising in a two-period model consisting of

an initial forecast of the demand and a refined forecast after observing some of the demand,

thereby reducing the risk of stock-outs and obsolete inventory.

A more recent contribution to the field of dynamic assortment planning is the work

of Caro and Gallien (2007). The authors focused on increasing revenue by dynamically

optimizing the assortment, which is put onto the shelves in the show room, in the context

of fast-fashion retailers, such as Zara, H&M or Mango. The model consists of a Bayesian

Gamma-Poisson learning scheme for the demand and a multi-armed bandit for the decision

process. A Lagrangian relaxation and further simplifications allow them to derive an index-

based heuristic, which performs competitively against adapted versions of the work of Brezzi

and Lai (2002) and Ginebra and Clayton (1995).

Recently, Saure and Zeevi (2009) chose another modeling path and considered a decision

structure in which customers choose one or no product so as to maximize their utility. The

asymptotic performance of their policy is within a quantity which is of the order of the

logarithm of the time horizon below the theoretical full-knowledge optimum. This stream of

work aims towards applications where a large number of measurements can be obtained.

2.3 Multi-Armed Bandits

Adaptive dynamic resource allocation problems (such as dynamic assortment planning) have

long been modelled as multi-armed bandit problems. A celebrated contribution was that of

Gittins (1979) who elucidated the optimality of policies of index form for an infinite horizon

setting with discounted returns. Whittle (1980) subsequently developed a more transparent

proof of the Gittins index theorem by demonstrating explicitly that the index policy’s value

function satisfies the Bellman equations. Some years later, Whittle (1988) introduced a

class of so-called restless bandits which generalised the Gittins model by allowing state

evolution in passive bandits. His mode of analysis via Lagrangian relaxation is now the

tool of choice to analyse (generalisations of) such models and we shall use this approach in

section 4. Weber and Weiss (1990) found conditions under which the index policies proposed

by Whittle are asymptotically optimal in a regime in which the number of available bandits

and the number chosen for processing at each epoch diverge to infinity in fixed proportion.
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A focus of current research has been the analysis of a multitude of variations of the

original multi-armed bandit and the restless bandit problem: Glazebrook et al. (2006) studied

two practically motivated families of restless bandits. The spinning plates problem represents

a situation in which assets tend to decline in profitability over time unless there is an impulse

of either active management or investment. The second one is the so called squad system,

which models the phenomenon of resource exploitation. Mahajan and Teneketzis (2007)

presented various extensions of the classical bandit problem, such as arm-acquiring bandits,

switching penalties, bandits with multiple plays and restless bandits. Farias and Madan

(2008) considered so-called irrevocable multi-armed bandits. In this model, an arm once

pulled and then discarded, can never be pulled again. Chakrabarti et al. (2008) considered

so called mortal multi-armed bandits, where arms have a limited lifetime. The interested

reader should consult Gittins et al. (2011), which provides an excellent overview of the index

theory behind multi-armed bandits and related processes.

2.4 Shelf Space Optimization

Both academics and practitioners alike have identified shelf space optimization as one of the

key levers for retailers. Fancher (1991) mentioned that with the emergence of computerized

assortment software for retailers in the 1980s, a more analytical approach to optimizing

the use of this valuable resource became possible. Corstjens and Doyle (1981) considered

shelf space allocation as “a central problem in retailing” and proposed a model, which

incorporates the elasticity of the demand function for each individual product as well as

cross elasticity effects between different products. Similarly, some years later Bultez and

Naert (1988) stated that “shelf space is the retailer’s scarcest resource.” and suggested

an extension of the model Corstjens and Doyle to allow demand to interrelate within and

across product-groups. The authors formulated a maximization problem with a shelf space

constraint, developed a Lagrange relaxation and derived an optimal allocation by solving a

simplified version of the relaxed problem. Citing a 1990s study, according to which shelf

space optimization was among the top three purposes for the collection of scanner data,

Wartenberg et al. (1997) stated that space allocation among concurrent products is a central

and regularly recurring problem in retailing. Yang and Chen (1999) and Yang (2001) agreed

that “shelf space is one of the most important resources” of a retail firm. Starting with

a similar formulation to Corstjens and Doyle (1981), the authors introduced an alternate

form that relies on a simpler, but computationally costlier integer programming approach.

Yang (2001) extended the model to consider various constraints for shelf space usage. More

recently, Nafari and Shahrabi (2010) took into account the price sensitivity of shelf space

decisions. As prices affect the interrelations and substitutability between products, they

affect shelf allocation decisions as well. Their model maximizes the total profit while taking
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account of the cost of inventory and transportation. An empirical study demonstrates the

applicability of the approach.

To our knowledge, the fusion of ideas in the current paper is quite novel. We formulate

an issue of shelf space usage as a dynamic assortment problem in a manner which permits

the determination of inter alia the marginal value of shelf space. This in turn yields insights

concerning optimal store size.

3 A Model for Dynamic Assortment Planning over a Selling

Season

In this section we develop a stylized model for dynamic assortment planning in a context

similar to fast fashion retailing. However, we do not see the application of our model limited

to this domain only. The focus is set on central questions of operations management, namely

which products to offer at which time, while other aspects may be incorporated in the

developed model in hindsight. Our model makes the following assumptions: The retailer is

managing a single store and this store has a show room with a fixed amount of available

shelf space.

The core question within the given problem is, how the retailer should choose a limited

number of items out of a huge set of products, such that he achieves maximal profit. Each

decision is valid for one period (week), that is during each week the assortment is only

replenished, not replaced by other products. Many consecutive periods form a season and

the retailer needs to make a decision at the beginning of each period concerning how he

wants to make use of his shelf space. The information (sales data) gained in past periods

provide the basis for future decisions.

The presence of a limited selling season and the fact that the set of products is changed

almost completely after each season, raises the need to gather information about the demand

of each item to make an informed decision and on the other hand to exploit this knowledge

to achieve the primary goal, which is profit maximization. It is therefore necessary to find

a balance between testing the market for new products and selling as many as possible

of the highest demand items found so far. It is rather obvious that exploration will have

more importance in the beginning and exploitation is stressed towards the end of the season.

More specific results on that will be discussed at a later point.

The constraining quantity is shelf space and the main uncertainty the demand for

each of the products. In order to fully concentrate on the assortment aspects, inventory

considerations are postponed and thus perfect replenishment is assumed. The demand and

profit per item, from here on mostly called the reward, are assumed to be constant, justified

by the fact that markdowns are rare in fast fashion stores. Moreover in the basic model there
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is no time lag between decision making and execution and no switchover cost associated

with changing the assortment, i.e. putting a different item on the shelf than in the previous

period.

The selling season is divided into T equally sized periods (usually weeks) and the time

index t gives the remaining sales periods, i. e. time steps are counted backwards. Shelf

space is expressed in units, which can relate to area or a custom measure of the retailer.

The maximum capacity of shelf space is Cmax units and before each period, the retailer

makes a decision concerning how to make use of it. There is a number of S items in the

set of products and each one, denoted by s, comes with a fixed reward rs and a shelf space

requirement cs of integer value. There is an unknown, constant mean demand rate γs for

product s and in a given period a random number of ns of them are sold.

The model formulates decision making as a multi-armed bandit with
∑S

s=1 cs arms,

where each arm stands for one unit of shelf space. In each period Cmax arms can be pulled,

where for each item s the number of arms to be pulled is either 0 or cs. This refers to the

wish of a retailer to have at least a certain amount of a product on the shelf, if any. In case

the product is included, a reward of rs per unit sold is earned. The retailer’s objective is to

maximize the expected sum of rewards over all pulls and all periods.

Whenever an arm or a cluster of arms belonging to item s is pulled, the number of sales

ns, which is computed as the realization of a Poisson distribution, gives further information

about the unknown rate, i. e. the mean weekly demand γs. We adopt a Bayesian approach to

parametric uncertainty in which the initial beliefs about the demand rates γs are summarised

by independent Gamma distributions with shape parameters ms and scale parameters αs.

This implies that the prior mean is E[γs] = ms/αs and the prior variance V[γs] = ms/α
2
s.

This set up yields an easy to handle Gamma-Poisson Bayesian learning mechanism as in

Aviv and Pazgal (2005). For a Poisson likelihood, the Gamma distribution is said to be

a conjugate prior, which means that the posterior for γs remains in the class of Gamma

distributions for an arbitrary number of Bayesian updates. Doing the algebra leads to

the insight that the parameter transition from one period to the next depending on the

observation ns is (ms, αs) → (ms + ns, αs + 1) when the arms corresponding to item s are

pulled. If item s is not selected for the assortment, there is no transition in the demand

parameter state. Another quantity of interest is the predictive distribution for ns, which

turns out to be a negative binomial distribution with parameters ms and αs(αs + 1)−1.

Therefore the expectation of ns in advance of sampling is E[ns] = ms/αs and its variance is

V[ns] = ms(αs + 1)/α2
s.

The first constraint mentioned above concerns shelf space availability. We now introduce

a second one, which reflects a retailer’s wish for a well-balanced mix of products in the

store. Every item within the set of products is assigned a unique affiliation with a product
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category, such as shoes, shirts, accessories, etc. Each category needs to be allocated a preset

minimum amount (potentially 0) of shelf space coverage. This is to ensure that marketing

related aspects like cross-selling or customer perception as to what kind of retailer the store

belongs to are fulfilled.

Every product belongs to exactly one of k categories. The resulting partition of {1, . . . , S}
into k subsets is denoted K1, . . . ,Kk. An admissible assortment needs to allocate at least Li

units of shelf space to category i products. Let us be a logical decision variable indicating

whether or not to include product s in the assortment. Then the second constraint reads∑
s∈Ki csus ≥ Li, i = 1, . . . , k.

The set of admissible assortments is therefore given by

U := {u ∈ {0, 1}S :
S∑
s=1

csus ≤ Cmax ∧
∑
s∈Ki

csus ≥ Li, i = 1, . . . , k}. (1)

Note that the existence of an admissible assortment is subject to the choice of parameters ccc,

(Li)i=1,...,k, (Ki)i=1,...,k, and Cmax. Accordingly, there is a need to check the well-posedness

of the problem.

4 The Development of Index Heuristics for the use of shelf-

space

Our analysis of the shelf-space problem outlined in the previous section will proceed in

three steps. In step 1 we shall use a Lagrangian relaxation of the dynamic programming

(DP) problem to develop a computable upper bound on the optimal return achievable over

a selling season. This upper bound will be used in the following section as a means of

evaluating competing heuristic solutions to the shelf-space problem. In step 2 we give an

account of a product index for evaluating how competitive a product is for inclusion in

the selected assortment. Finally in step 3 we describe heuristics which use index values to

construct close-to-optimal assortments.

4.1 A computable upper bound on the optimal return

Due to the sequential character of the problem, we can formulate an analytical solution via

dynamic programming. The Bellman equations for the optimal profit-to-go function J∗t are
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given by

J∗t (m,ααα) = max
u∈U

S∑
s=1

rs
ms
αs
us + En[J∗t−1(m + n · u,ααα+ u)]

J∗0 (m,ααα) = 0

(2)

where the expectation is with respect to the predictive distribution mentioned above. The

operator “·” is to be understood as the component wise product of two vectors, resulting in

a vector of the same size as both input vectors.

As the above Bellman equations reveal, the only dependence between choices is induced

by the constraints. Therefore a natural next step is to relax the constraints taking a

Lagrangian approach. The Lagrangian H, the sum of the original function and the weighted

deviation from meeting the constraints, satisfies

Hλλλ,µµµ
t (m,ααα) = Cmaxλt(m,ααα) −

∑k
i=1 Li µi,t(m,ααα)

+ max
u∈{0,1}S

S∑
s=1

(
rs
cs
ms
αs
− λt(m,ααα) + µκ(s),t(m,ααα)

)
csus

+ En[Hλλλ,µµµ
t−1(m + n · u,ααα+ u)]

Hλλλ,µµµ
0 (m,ααα) = 0.

The Lagrange multipliers λt(m,ααα) and µi,t(m,ααα) depend on the period t and the state

(m,ααα). We introduce the shorthand notation λλλ = (λt)t=1..T and similarly µ1µ1µ1, . . . ,µkµkµk. The

vectors µ1µ1µ1, . . . ,µkµkµk will notationally be further condensed to a single quantity µµµ. For the

purpose of referencing from product index to category we use a category affiliation vector

κκκ ∈ {1, . . . , k}S .

In the practical context of product choice the multipliers λλλ can be thought of as a price for

one shelf space unit per period. Note that λt ≥ 0 due to the nature of the constraint equation.

The multipliers µµµ can be thought of as a price incurred when introducing the marketing

related demands of the second constraint. As the differing direction of the inequality in the

second constraint resulted in a negative sign in the Lagrangian, we also have µi,t ≥ 0.

For the sake of computational feasibility, a slight simplification now delivers a product-

wise decomposition within the equations. Let the multipliers λλλ,µµµ be constant over the states

(m,ααα) and hence dependent only on the time t. Straightforward algebraic manipulations
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yield

Hλλλ,µµµ
t (m,ααα) =

t∑
τ=1

(
Cmaxλτ −

k∑
i=1

Li µi,τ
)

+
S∑
s=1

Hλλλ,µµµ
t,s (ms, αs) with

Hλλλ,µµµ
t,s (ms, αs) = max

{
rs
ms
αs
− λtcs + µκ(s),tcs + Ens [H

λλλ,µµµ
t−1,s(ms + ns, αs + 1)],

Hλλλ,µµµ
t−1,s(ms, αs)

}
.

(3)

Following standard Lagrangian theory, the sought maximum of the profit-to-go function can

now be found by minimizing Hλλλ,µµµ
t with respect to λλλ and µµµ. Denote that minimum by H∗t .

It can be proven quite easily, see for example Caro and Gallien (2007), that the solution

H∗ of the dual problem never underestimates the maximum, but serves as an upper bound

(Weak DP Duality). We have

J∗t (m,ααα) ≤ H∗t (m,ααα) := min
λλλ,µiµiµi≥0,
i=1,...,k

Hλλλ,µµµ
t (m,ααα) (4)

for all periods t, states (m,ααα), and Lagrange multipliers λλλ and µµµ.

Note that, in (3) we have achieved a decomposition into single product sub-problems

and hence a considerable saving in computational effort. The resulting upper bound H∗ is

now computable for problems involving several hundred products. It will emerge that it is

also sufficiently tight that it can be effectively used in section 5 as a means of assessing the

closeness-to-optimality of our proposed heuristic solutions to the shelf-space problem.

A primary focus of the paper concerns how the optimal return from the assortment

problem depends on the amount of available shelf-space Cmax. Given the tightness of the

upper bound H∗ and its consequential key role in the numerical exploration of this issue

in section 5, we record in Proposition 1 some important facts about how it depends upon

Cmax. In preparation for this, simply observe that (3) and (4) together imply, for suitably

chosen Φ : R(1+k)T → R, that H∗T (m,ααα) has a representative form

H∗T (m, α) = min
λ,µi≥0,i=1,2,...,k

{
Φ (m, α, λ;µi, 1 ≤ i ≤ k) + Cmax

(
T∑
t=1

λτ

)}
. (5)

Observe that, for all values of T,m, α, λ;µi, 1 ≤ i ≤ k, the bracketed quantity on the

right hand side of (5) is linear and non-decreasing in Cmax. Proposition 1 follows from

standard results.

Proposition 1. For all T,m, α, the upper bound H∗T (m, α) is concave and non-decreasing

in Cmax.
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It will turn out to be very important to achieve the purposes set out in the Introduction

to have access to the rate of change of the upper bound on achievable returns H∗T (m, α)

with respect to the available shelf-space Cmax. For reasons which will emerge more fully in

the numerical study of section we call this the marginal value of shelf-space. The reader will

find more information about this key quantity in subsection 5.3.

4.2 Product indices for shelf-space use

We develop the analysis further by utilizing the Lagrangian relaxation in (3) to produce an

index for each product which calibrates its status for inclusion in any selected assortment.

To achieve this we take the single product problem in (3) and introduce a single combined

multiplier Gs,t := λt−µκ(s),t which can be understood as a net charge per unit of shelf-space

used by product s at time t from the end of the selling season. Hence the single product

DP in (3) has a simple interpretation which concerns whether or not product s should be

included in the assortment when inclusion is subject to such a charge. As we shall now focus

on a single product we drop the identifier s from the notation and thus have a collection

of multipliers {Gt, t ≥ 1} which, for tractability we assume to take the form Gt = Gθt,

where G ∈ R and {θt, t ≥ 1} is a decreasing sequence of positive real numbers. Crucial

simplifications now follow concerning the nature of solutions to the DP. We thus consider

the single product problem given by

HG
t (m,α) = max

{
r
m

α
−Gθtc+ En

[
HG
t−1 (m+ n, α+ 1)

]
, HG

t−1 (m,α)
}

(6)

We say that the DP in (6) is a stopping problem if it is true that whenever it is optimal to

exclude the product from the assortment at t then it must also be optimal to exclude the

product at all times t′ ≤ t. This will be the case if ∀m,α, t ≥ 2

HG
t (m,α) = HG

t−1 (m,α) ⇒ HG
t−1 (m,α) = HG

t−2 (m,α) (7)

We further say that the single product problem is indexable if HG
t (m,α) is decreasing in G

∀m,α, t ≥ 1. The reason for this terminology will become clear later.

Theorem 1. The single product problem in (6) is (a) a stopping problem and (b) is indexable.

Proof. We first prove (a) . First note that we may restrict to G ≥ 0 without loss of generality

since if G < 0 it is trivially always beneficial to include the product in the assortment. We

establish (7) using a proof by contradiction. We first note from (6) that

HG
t (m,α) ≥ HG

t−1 (m,α) ∀m,α, t ≥ 1 (8)
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We suppose now that ∃m,α, t ≥ 1 for which it is strictly optimal to exclude the product

from the assortment at t but optimal to include it at time t− 1. It must then follow that

rmα−Gθtc+En
[
HG
t−1 (m+ n, α+ 1)

]
< HG

t−1 (m,α) = rmα−Gθt−1c+En
[
HG
t−2 (m+ n, α+ 1)

]
(9)

But using the facts that G ≥ 0, θt ≤ θt−1 within (9) we conclude that

En
[
HG
t−1 (m+ n, α+ 1)

]
< En

[
HG
t−2 (m+ n, α+ 1)

]
which contradicts (8). This concludes the proof of (a) . To establish (b), we first note that it

follows from the fact that our single product problem is a stopping problem that the DP

equations may be recast as

HG
t (m,α) = max

λ≥0

{
rmα −Gθtc+ En

[
HG
t−1 (m+ n, α+ 1)

]
, 0
}
, (10)

where HG
0 = 0. An argument which uses a simple induction on t now establishes that

HG
t (m,α) is decreasing in G ∀m,α, t ≥ 1 as required. This completes the proof.

We now introduce the product index Gt (m,α) , where

Gt (m,α) := inf
{
G : HG

t (m,α) = 0
}
. (11)

Note that since trivially we have that HG
t (m,α) > 0 whenever G < 0, it is clear that all

product indices must be positive. With this in place, the solution to the single product

problem is as described in the following result which we give without proof.

Proposition 2. If the single product is in state (m,α) at time t to the end of the season

then it is optimal to include the product in the assortment if and only of G ≤ Gt (m,α).

Please note that it must follow that the solution to the multi-product Lagrangian

relaxation in (3) must have an index form when we set λt − µκ(s),t = Gθs,t ∀s, t with

{θs,t, t ≥ 1} decreasing and positive ∀s. By the above account, we are guaranteed the

existence of indices Gs,t (ms, αs) such that if the system state is (m, α) at time t to the end

of the season then in the relaxed problem in (3) precisely those products are included in the

optimal assortment whose indices exceed G.

Reverting again to the single product, in what follows we shall make the choice θt =

1,t ≥ 1, and defer to future work an exploration of the benefits which exploitation of the

θ−sequence may confer. For example, the above analysis makes clear that we can produce

index solutions for cases where the per unit charge for shelf-space increases through the
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season. In any event, from the above proposition when θt = 1 the quantity Gt (m,α) has an

interpretation as a fair charge for a unit of shelf space to be allocated to the product when

in state (m,α) at time t. If a charge for shelf space is levied which is in excess of Gt (m,α)

then it will be optimal not to field the product. This decision is reversed for charges below

the value of the product index.

We can infer important structural properties of the indices Gt (m,α) from properties of

the value HG
t (m,α). The proof details for Lemma 1 and Lemma 2 are available from the

authors. Lemma 3 follows directly from the previous two using (11).

Lemma 1. HG
t (m,α) is increasing in m.

Lemma 2. HG
t (m,α) is decreasing in α.

Lemma 3. Gt(m,α) is increasing in m and decreasing in α.

Further, from (3) we see that HG
t (m, α) and hence Gt(m,α) are increasing in t. This is

expressed in Lemma 4.

Lemma 4. Gt(m,α) is increasing in t.

The above results all accord with intuition. Since the mean demand per unit of time

in state (m,α) is m/α, increasing m and decreasing α are alternative ways of making the

current state more attractive. That the product index should increase in line with such

changes is thus unsurprising. It is the result in the final lemma which in many ways is the

most insightful. For larger t there is greater time and opportunity to exploit whatever is

learnt about the product’s true demand rate as the product is fielded. The product index

increases with t as a result.

Even with the simplification offered by taking θt = 1, t ≥ 1, the task of index computation

is an exacting one and we shall exploit the availability of index approximations in the literature

deployed in simpler contexts than the current one. We shall use three approximations to the

index Gt (m,α) in what follows. Firstly, the greedy index is given ∀m,α, t ≥ 1 by

GGDYt (m,α) = G1 (m, a) =
rm

cα
(12)

and assesses products on the sole basis of expected return in the next period. Heuristics based

on the greedy index are myopic and ignore longer term consequences of decisions including

the opportunity of learning about demands for products. The other two approximations

both exploit a normal approximation to the predictive distribution for demand in state

(m,α) whose exact form is negative binomial. They both supplement the greedy index by

a second term which reflects the benefit derived by the opportunity to learn about the
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product’s true demand rate. The approximating index derived from the work of Brezzi and

Lai (2002) takes the form

GBLt (m,α) =
rm

cα
+
r
√
m

cα
ψ

 1

α log
(

t
t−1

)
 , (13)

where ψ (s) is increasing over the range s ∈ R+ and is given by

ψ(t) =



√
s/2 if s ≤ 0.2,

0.49− 0.11
√
s if 0.2 < s ≤ 1,

0.63− 0.26
√
s if 1 < s ≤ 5,

0.77− 0.58
√
s if 5 < s ≤ 15,

(2 log s− log log s− log 16π)1/2 if s > 15.

Please note that it is straightforward to show that the index GBLt shares the properties of

the true index described in Lemmas 3 and 4 above and reduces to the greedy index (and

hence also the true index) when t = 1. A further approximating index derived from the

work of Caro and Gallien (2007) is given by

GCGt (m,α) =
rm

cα
+

ztr
√
m

c
√
α2 + α3

, (14)

where zt is the unique solution in z to the equation (t− 1) Ψ (z) = z, with Ψ the normal

error function. The sequence {zt, t ≥ 1} is increasing and concave, with z1 = 0 from which

it follows that the index GCGt again shares the properties of the true index described in

Lemmas 3 and 4 above and again reduces to the greedy index (and hence also the true index)

when t = 1. In the next subsection we shall use Gapp to denote a generic approximating

index.

4.3 The construction of index heuristics for shelf-space use

A natural approach to the construction of an admissible assortment in any system state is first

within each product category to allow products into the assortment in descending order of the

appropriate indices (highest first) until the category constraints are met. Second, produce

a common list of remaining products and allow these into the assortment in decreasing

index order as long as shelf capacity allows. If necessary, in this phase we skip items and

continue with lower index products which can utilize unused capacity. We call this approach
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top down. More formally, in each system state (m,ααα) and time to go t, an assortment is

constructed as follows:

Top-down policy

I. Meeting the product category constraints.

For i = 1, . . . , k do the following:

1. Let ν ∈ {1, . . . , S}|Ki| reference the items in category i. Let ξi ∈ {1, . . . , |Ki|}|Ki| be

a permutation such that Gappν(ξi)
yields a list of indices in descending order, namely

Gappν(ξi(1))
≥ . . . ≥ Gappν(ξi(|Ki|)).

2. The number of category i items needed to meet the category constraint is si :=

min
{
s; 1 ≤ s ≤ |Ki| and

s∑
j=1

cν(ξi(j)) ≥ Li
}

and the category i items included in step

I is Ii := {ν (ξi (1)) , . . . , ν (ξi (si))} .

II. Utilizing the remaining common area.

1. Following step I, the remaining products are R := {1, . . . , S} \∪ki=1Ii and the remaining

capacity is cR := Cmax −
k∑
i=1

si∑
j=1

cν(ξi(j)), assumed non–negative.

2. Let π ∈ {1, . . . , S}|R| reference the items in R and let ξ0 ∈ {1, . . . , |R|}|R| be a

permutation such that Gappπ(ξ0)
yields a list of indices in descending order, namely

Gappπ(ξ0(1))
≥ . . . ≥ Gappπ(ξ0(|R|)).

3. Introduce an auxiliary variable ρ ∈ {0, 1}|R| which is developed inductively to indicate

inclusion as follows:

ρ (j) = 1⇔
j−1∑
l=1

cπ(ξ0(l))ρ (l) + cπ(ξ0(j)) ≤ cR.

The set I0 := {π (ξ0 (j)) : 1 ≤ j ≤ |R| and ρ (j) = 1} is the corresponding collection

of items to be included to utilize the common area.

The set of items to be included in the arrangement by this heuristic is I := ∪ki=0Ii.

Note that it is possible, though unlikely, that the values of
∑k

i=1 Li may be very close

to Cmax. If this is the case then the problem is close to having an additive decomposition

by category. In this event, overshooting of the category thresholds Li during step I of the

top-down approach may mean that cR < 0 and that the total capacity Cmax is exceeded in

this phase of the algorithm. In such a case the heuristic would fail to deliver a feasible solution
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on occasion even when the problem is well-posed. Note that this cannot happen under

the condition
∑k

i=1 (Li − 1 + maxs∈Ki cs) ≤ Cmax which we would expect to be satisfied in

practice.

A slightly more sophisticated version again uses step I of the top-down approach for all

individual categories. The residual capacity is then filled optimally with respect to index

values by solving a 0–1 knapsack problem for the remaining products. We shall call this the

mixed method. It constructs assortments as follows:

Mixed Method

I. Meeting the product category constraints. As for the top-down policy.

II. Utilizing the remaining common area.

1. Following step I, the remaining products are R := {1, . . . , S} \∪ki=1Ii and the remaining

capacity is cR := Cmax −
k∑
i=1

si∑
j=1

cν(ξi(j)), assumed non–negative.

2. Let π ∈ {1, . . . , S}|R| reference the items in R. Solve the optimization problem:

max

|R|∑
j=1

Gappπ(j)cπ(j)xj ,

subject to

|R|∑
j=1

cπ(j)xj ≤ cR, xj ∈ {0, 1}

and write x∗ ∈ {0, 1}|R| for an optimal solution. The set I0 :=
{
π (j) : 1 ≤ j ≤ |R| and x∗j = 1

}
is the corresponding set of items to be included to utilize the common area.

The set of items to be included in the arrangement by this heuristic is I := ∪ki=0Ii.

The above approaches have the advantages of simplicity and will produce strongly

performing feasible solutions when the stated sufficient condition is satisfied. However we

conclude with a so-called knapsack method which is guaranteed to produce a feasible solution

for any well posed problem. Before outlining the algorithm we give a brief rationale.

The challenge we have concerns the fact that, in the absence of the individual product

category constraints, a knapsack solution may wish to leave capacity idle. For each product

category i, we therefore meet these constraints by considering a range of knapsack-like

problems aimed at using capacity Li + h where h is no greater than some overlap oi which

is determined by the capacity used in the first stage of the top-down approach. This phase
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leaves us with oi + 1 candidates for each product category i. Should any candidate fail to

utilize its available capacity Li+h fully it is discarded and we seek a full utilization candidate

instead. We do this by replacing the Gapps as weights in the corresponding knapsack problem

by Vs, which are designed to ensure that a full utilization set of even the least attractive items

performs better than any other set of items which leave capacity unused. This approach

ensures that, for each Li + h, we are getting the best of all feasible full utilization solutions.

Which of these candidates proves the most successful will depend upon the attractiveness of

the product categories relative to each other and on the remaining capacity. We terminate

the approach by taking each of the P =
k∏
i=1

(oi + 1) combinations of candidate sets and

filling up any remaining capacity with items which are yet to be included to optimize an

index-based objective.

Knapsack Method

I. Meeting the product category constraints.

For i = 1, . . . , k do the following:

1. Solve the optimization problem:

min |Ai| ,

subject to

Ai ⊆ Ki,
∑
s∈Ai

cs ≥ Li and Gapps ≥ max
{
Gappj , j ∈ Ai�Ki

}
∀s ∈ Ai.

Define oi :=

( ∑
s∈Ai

cs

)
− Li and observe that 0 ≤ oi ≤ (maxs∈S cs)− 1.

2. For each integer h, 0 ≤ h ≤ oi, solve the optimization problem:

max
∑
s∈Ki

Gapps csxs,

subject to∑
s∈Ki

csxs ≤ Li + h, xs ∈ {0, 1}
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and write x (i, h) ∈ {0, 1}|Ki| for an optimal solution. If∑
s∈Ki

csxs (i, h) < Li + h

then discard the solution x (i, h) and proceed to Step 3.

3. For each h for which the solution x (i, h) was discarded at Step 2, proceed as follows:

(a) Let ν ∈ {1, . . . , S}|Ki| reference the items in category i. Let ζi ∈ {1, . . . , |Ki|}|Ki|

be a permutation such that Gappν(ζi)
yields a list of indices in ascending order.

(b) Choose δ less than
(
(Li + h)|Ki|

)−1
but greater than machine precision.

(c) Define Vs := 1 + δ ζ−1i (ν−1(s)), where ζ−1i (ν−1(s)) simply is the rank of item s

within category i according to ascending Gapps . Solve the optimization problem:

max
∑
s∈Ki

Vscsxs,

subject to∑
s∈Ki

csxs ≤ Li + h, xs ∈ {0, 1}

and write x (i, h) ∈ {0, 1}|Ki| for an optimal solution.

4. Using the solutions x(i, h) obtained from Steps 2 and 3, define Ii,h :=
{
s; s ∈

Ki and xs(i, h) = 1
}

, 0 ≤ h ≤ oi. Set Ii,Li+oi is guaranteed non-empty.

II. Utilizing the remaining common area.

1. Write P =
k∏
i=1

(oi + 1) and let χ ∈ {1, . . . ,maxi oi + 1}k×P reference the list of

h−values of all (i, h) pairs considered in Steps 2 and 3 above when compiled into

a single list. In particular χij is the h−value of the (i, h) pair within the jth listed

combination.

2. Following I we have a range of candidate sets of residual products given by Rj :=

{1, . . . , S} \∪ki=1Ii,χij with associated remaining capacity cRj = Cmax−
k∑
i=1

∑
s∈Ii,χij

cs, 1 ≤

j ≤ P.
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3. For each j, 1 ≤ j ≤ P, solve the optimization problem:

max
∑
s∈Rj

Gapps csxs

subject to∑
s∈Rj

csxs ≤ cRj , xs ∈ {0, 1}

and write x (j) ∈ {0, 1}|Rj | for an optimal solution. The set I0,j := {s : s ∈ Rj and xs (j) = 1}
is the corresponding set of items to be included to utilize the common area.

4. Write

σj :=
∑
s∈I0,j

Gapps cs +

k∑
i=1

∑
s∈Ii,χij

Gapps cs

with j∗ ∈ arg max1≤j≤P σj .

The set of items to be included by the heuristic is I := I0,j∗ ∪
(
∪ki=1Ii,χi,j∗

)
.

5 Numerical Results

Our numerical study first focusses on an evaluation of the performance of the heuristic index

policies for dynamic assortment planning introduced in the last section. To this end we use

generated data sets similar to those in the peer literature. This is the focus of subsection

5.1. We expand this study in subsection 5.2 by an exploration of the impact of demand

uncertainty and length of selling season on heuristic policy performance. In the following

subsection 5.3 we develop the marginal value of shelf-space, explore how it changes with

store size and proceed in 5.4 to understand the impact of demand uncertainty on it. We

conclude in subsection 5.5 with a study of how optimal store size is impacted by the length

of the selling season and hence by the rapidity of change in product offerings.

Methodology

Given the Bayesian nature of the learning model, we can generate the sales data for

our simulation directly using the predictive negative binomial distribution. Besides the

randomization of sales data we average over the reward per product rrr. These values are

drawn from a single uniform distribution in the case of one category and from one or multiple

different uniform distributions in the general case. The simulations of the policy performance
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are run as often as it takes to get the relative estimation error as low as 0.02% or less. If,

for the sake of computational brevity, less runs were carried out, the precision is stated

alongside the results.

A crucial part of the numerical study is the computation of H∗, which from (4) is an

upper bound on the optimal return. We shall see that this bound is sufficiently tight that in

many of our studies we are able to use it as a surrogate for the optimal return itself. Note

from (4) that it is computed as a minimum of the (non-differentiable) Lagrangian function

with respect to the non-negative Lagrange multipliers. We use the Nelder-Mead simplex

algorithm for this task. See Nelder and Mead (1965). This computational effort involved in

this task dominates that for all other aspects of the study and grows exponentially with T ,

the length of the sales season. Please note that, throughout the numerical study reported

numerical values of the upper bound (H∗) are always factored by the length of the selling

season (T ). Hence reported values are in fact H∗T−1.

Experiment Description

In subsections 5.1 and 5.2 below we explore the quality of performance of the index heuristics

proposed in section 4. There will be three distinct testing setups. The first will be a single

category case (k = 1) where the lower shelf-space constraint is met trivially. Rewards rs

are drawn from the interval [2, 8] . The second setup uses a moderate number of categories

(k ∈ {3, 4, 5}), with rewards drawn as for the first setup. In the third setup we develop the

configuration for the second by generating rewards from distinct categories from distinct

subintervals of [2, 8] . Hence when k = 3 we use the subintervals ([2, 4] , [4, 6] , [6, 8]) , for k = 4

we use ([2, 4] , [3.5, 5.5] , [4.5, 6.5] , [6, 8]) and for k = 5 we use ([2, 4] , [3, 5] , [4, 6] , [5, 7] , [6, 8]) .

These examples create a tension between differentially attractive categories and the need to

meet the lower shelf-space constraints for strategic reasons.

Throughout the experiments, the number of products is set to a moderate number of

S = 720. In order to eliminate effects due to a change in the average number of products

on shelf with respect to S, the total shelf space Cmax is not set to be a fixed number, but

to be proportional to the average shelf space need. Therefore Cmax := 30 1
S

∑S
s=1 cs. The

lower thresholds Li, i = 1, . . . , k are throughout set such that the common shared area covers

about 30% of the maximum capacity. Therefore Li := b0.7 Cmax/kc.
The heuristic policies studied in the following two subsections all combine a choice

of approximate index (greedy (GDY), Brezzi-Lai (BL) or Caro-Gallien (CG)) with an

index-based heuristic approach to shelf-space allocation (Top-down, Mixed or Knapsack).
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GDY CG BL Upper bound

{1, 2, 3} Top-down 0.38 0.13 0.12 5154.7 ± 0.02%
Knapsack 0.37 0.13 0.12

{2, 4, 6} Top-down 0.38 0.13 0.12 10309.5 ± 0.02%
Knapsack 0.37 0.13 0.13

{1, 2, 3, 4, 5} Top-down 0.43 0.18 0.17 7734.8 ± 0.05%
Knapsack 0.42 0.18 0.17

{3, 4, 5} Top-down 1.06 0.81 0.81 10315.8 ± 0.06%
Knapsack 0.42 0.18 0.18

{2, 4, 7} Top-down 0.67 0.42 0.40 11163.9 ± 0.05%
Knapsack 0.34 0.09 0.09

Table 1: Suboptimalities (in % below the dual DP upper bound) of three indices combined
with two heuristic methods for shelf-space allocation for various ccc.

5.1 Impact of Product Categories (k) and Space Requirement (c) on Pol-

icy Performance

This set of experiments examines the impact of different ranges of space demands, that is

different vectors ccc. Each of the sets {1, 2, 3}, {2, 4, 6}, {1, 2, 3, 4, 5}, {3, 4, 5}, {2, 4, 7} serves

as a ccc-generating set, which means that the values of the set’s elements are allocated equally

often to the S items as their capacity need. The time horizon is T = 10 and the prior

demand for all products is given by Eγ = 10 and Vγ = 5.

The results for the first setup (only one category) are shown in Table 1. First of all,

the suboptimality levels for each of the heuristics are very low. That is, the adapted upper

bound is exceptionally tight. For the given parameters the greedy index performs worst and

the Brezzi-Lai index best.

In all three cases, where the greatest common divisor of the ccc-generating sets lies within

the set, i. e. {1, 2, 3}, {2, 4, 6} and {1, 2, 3, 4, 5}, the top-down and the knapsack approach

perform identically up to small error terms. In the other two cases, i. e. {3, 4, 5} and

{2, 4, 7}, the knapsack approach is clearly superior. Moreover the difference in suboptimality

is approximately identical to the percentage reduction in shelf space usage in the top-down

approach. Table 2 shows that the knapsack method makes use of all shelf space at all

times, whereas the top-down approach does not. The difference in this average resource

exploitation divided by the available amount gives the usage difference in the next to bottom

line. The bottom line then shows that this lack of exploitation is responsible for the top-down

approach’s inferiority up to an amount of the order of the error terms. This result illuminates

the advantage of the knapsack approach: It makes better use of the available shelf space.
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Policy: CG {2, 3, 4} {2, 3, 5} {2, 4, 5} {2, 4, 7} {3, 4, 5} {3, 5, 7}
Opt. gap (%) Top-down 0.50 0.49 0.52 0.42 0.81 0.64

Knapsack 0.11 0.11 0.13 0.09 0.18 0.12
Difference 0.39 0.38 0.40 0.34 0.63 0.52

Shelf usage (%) Top-down 99.57 99.60 99.59 99.65 99.35 99.45
Knapsack 100.00 100.00 100.00 100.00 100.00 100.00
Difference 0.43 0.40 0.41 0.35 0.66 0.55

Usage diff. - opt. gap diff. (%) 0.04 0.02 0.01 0.02 0.02 0.03

Table 2: Knapsack approach outperforms top-down alternative due to shelf space usage.
Tabulated values are rounded.

In the second setup (several categories, uniform reward draws) most of the findings from

the first setup are verified. This includes the relation between suboptimality difference from

top-down to knapsack and the shelf space usage. The same is true for the general relative

performance of the CG, the BL and the greedy indices.

Although we consider now more than one category, the increasing number of categories

k has little influence on the suboptimality gaps. Surprisingly, even the mixed and knapsack

inclusion modes show little difference in performance (Table 3). Indeed, a large amount of

additional sampling is needed until we find a statistically significant difference, which for

the case of {2, 4, 7}, k = 3 and the CG-policy is 0.007%± 0.002% in favor of the knapsack

policy for a sample size of about 4 million.

Things change somewhat for the third setup (several categories, separated ranges for

reward draws). Table 4 shows the numerical results for the same setting as before, but for

unequally spread rewards, that is some categories are generally more profitable than others.

The most significant observation is with respect to the relative performances of the different

heuristic approaches to shelf-space allocation. The knapsack based combinatorial heuristic

now clearly outperforms the mixed approach. There is roughly the same gap between the

mixed and the top-down approach, but this now cannot be explained by capacity usage gaps

alone. It is rather that more shelf space is allocated to items from clearly inferior categories

than is demanded by the lower thresholds Li. There is now a significant, albeit moderate

difference between suboptimalities for different k. The main driver for that is very likely the

particular choice of the intervals, as for an increasing number of intervals, the best items of

the mid-level attractive categories get successively worse. The differences between policy

performance due to the choice of index is consistent with earlier results. Both CG and BL

continue to perform outstandingly well and modestly better than GDY.
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GDY CG BL Upper bound

Top-down 0.74 0.50 0.47
{2, 4, 7}; k=3 Mixed 0.41 0.14 0.12 11169.4 ± 0.03%

Knapsack 0.41 0.16 0.12

Top-down 0.78 0.53 0.50
{2, 4, 7}; k=4 Mixed 0.44 0.16 0.16 11169.4 ± 0.03%

Knapsack 0.42 0.18 0.14

Top-down 0.82 0.58 0.52
{2, 4, 7}; k=5 Mixed 0.48 0.21 0.18 11169.4 ± 0.03%

Knapsack 0.46 0.21 0.16

Top-down 1.01 0.77 0.72
{3, 4, 5}; k=3 Mixed 0.37 0.13 0.09 10310.1 ± 0.03%

Knapsack 0.37 0.14 0.09

Top-down 1.03 0.79 0.75
{3, 4, 5}; k=4 Mixed 0.41 0.15 0.12 10310.1 ± 0.03%

Knapsack 0.41 0.15 0.12

Top-down 1.05 0.81 0.76
{3, 4, 5}; k=5 Mixed 0.42 0.17 0.14 10310.1 ± 0.03%

Knapsack 0.42 0.18 0.11

Table 3: Suboptimalities (in % below the dual DP upper bound) of three indices combined
with three heuristic methods for shelf-space allocation for various ccc, k and equally spread
rewards.
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GDY CG BL Upper bound

Top-down 2.30 2.02 1.98
{2, 4, 7}; k=3 Mixed 1.90 1.61 1.56 9439.8 ± 0.02%

Knapsack 0.56 0.22 0.19

Top-down 2.59 2.35 2.36
{2, 4, 7}; k=4 Mixed 2.17 1.94 1.96 9464.5 ± 0.02%

Knapsack 0.58 0.26 0.27

Top-down 3.08 2.86 2.80
{2, 4, 7}; k=5 Mixed 2.67 2.48 2.42 9410.1 ± 0.02%

Knapsack 0.71 0.41 0.37

Top-down 2.38 2.09 2.05
{3, 4, 5}; k=3 Mixed 1.61 1.31 1.29 8695.6 ± 0.02%

Knapsack 0.53 0.21 0.16

Top-down 2.65 2.38 2.37
{3, 4, 5}; k=4 Mixed 1.88 1.61 1.61 8681.0 ± 0.02%

Knapsack 0.54 0.22 0.21

Top-down 2.96 2.69 2.64
{3, 4, 5}; k=5 Mixed 2.21 1.95 1.90 8747.0 ± 0.02%

Knapsack 0.68 0.35 0.31

Table 4: Suboptimalities (in % below the dual DP upper bound) of three indices combined
with three heuristic methods for shelf-space allocation for various ccc, k and unequally spread
rewards.
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5.2 Impact of Length of Selling Season (T ) and Prior Demand Uncertainty

(Vγ) on Policy Performance

This series of experiments studies the effect of longer time horizons (T = 20) and the impact

of higher uncertainty of the a priori demand estimates (Vγ = 50). The ccc-generating set is

fixed to be {2, 4, 7}. In the first setup (one category) we take the following approach: From

initial time and uncertainty values (T = 10, Vγ = 5), we explore first the time sensitivity of

policy performance (increase to T = 20) and then – starting again from the basic values –

sensitivity to prior demand uncertainty (increase to Vγ = 50). Table 5 shows the numerical

results for these three settings. The observed relative performance continues to be related

to the relative use made of the key shelf-space resource. Alterations in T or Vγ change the

upper bound and the policy performance, but not the difference in suboptimality levels

between the knapsack and the top-down approach. The upper bound H∗ continues to be

very tight. Enhanced prior uncertainty seriously undermines the performance of the greedy

index.

GDY CG BL Upper bound

Top-down 0.67 0.43 0.42
T = 10; Vγ = 5 Knapsack 0.34 0.09 0.09 11163.9 ± 0.05%

Difference 0.33 0.34 0.33

Top-down 1.31 0.62 0.69
T = 20; Vγ = 5 Knapsack 0.99 0.28 0.35 11545.8 ± 0.06%

Difference 0.32 0.34 0.34

Top-down 4.81 1.06 0.82
T = 10; Vγ = 50 Knapsack 4.47 0.74 0.50 15663.9 ± 0.06%

Difference 0.34 0.32 0.32

Table 5: Suboptimalities (in % below the dual DP upper bound) of three indices combined
with two heuristic methods for shelf-space allocation for various T and Vγ .

Tables 6 and 7 give results for respectively the second and third experimental setups.

The principal features are broadly consistent with those of Table 5. Figure 1 shows two

outtakes of Table 7. The left hand plot compares the heuristic fill-up methods top-down,

mixed and knapsack for the configuration k = 3, T = 10, Vγ = 50, ccc-generating set {2, 4, 7}
and unequally spread rewards using the Caro-Gallien (CG) index. The plot shows that

the knapsack method not only outperforms the other two, but gets very close to the upper

bound. The right hand plot compares three index policies for the same configuration as

before using the knapsack fill-up method along with each of the policies. The plot shows

that the greedy policy does have difficulties with the high uncertainty, whereas the other

two come very close to the upper bound. This is particularly noteworthy, as managers often
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GDY CG BL Upper bound

Top-down 0.74 0.47 0.50
T = 10; Vγ = 5 Mixed 0.41 0.12 0.14 11169.4 ± 0.03%

Knapsack 0.41 0.12 0.16

Top-down 1.32 0.70 0.65
T = 20; Vγ = 5 Mixed 0.96 0.36 0.28 11543.5 ± 0.05%

Knapsack 0.98 0.38 0.25

Top-down 4.79 0.93 0.98
T = 10; Vγ = 50 Mixed 4.51 0.55 0.76 15664.8 ± 0.05%

Knapsack 4.49 0.43 0.80

Table 6: Suboptimalities (in % below the dual DP upper bound) of three indices combined
with three heuristic methods for shelf-space allocation for various T and Vγ and rewards
equally spread.

GDY CG BL Upper bound

Top-down 2.30 1.98 2.02
T = 10; Vγ = 5 Mixed 1.90 1.56 1.61 9439.8 ± 0.02%

Knapsack 0.56 0.19 0.22

Top-down 3.44 2.68 2.61
T = 20; Vγ = 5 Mixed 3.02 2.29 2.21 9877.2 ± 0.02%

Knapsack 1.88 1.05 0.93

Top-down 7.09 2.90 3.04
T = 10; Vγ = 50 Mixed 6.76 2.46 2.63 13404.1 ± 0.03%

Knapsack 5.49 1.08 1.34

Table 7: Suboptimalities (in % below the dual DP upper bound) of three indices combined
with three heuristic methods for shelf-space allocation for various T and Vγ and rewards
unequally spread.

tend to opt for secure options in the assortment rather than to take calculated risks at the

beginning of the selling season. Overall, the new direction in fast procurement must go

together with a new attitude towards risk to realize its full potential.

5.3 The Marginal Value of Shelf Space

Shelf space is a key resource for the retailer. For a whole range of purposes access to the

marginal value of shelf space, namely the increment in return achievable from an increment

in the available shelf-space Cmax, is an important guide in decision-making. Such purposes

could include the evaluation of plans to remodel an existing store or to move to another

site of different capacity. Our numerical results to date suggest strongly that in attempting

to study this marginal value we can for all practical purposes replace the optimal return
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Figure 1: Graphical representation of parts of Table 7. Performance is expressed as a
percentage of upper bound H∗.

J∗ which we cannot compute by its tight upper bound H∗ which we can. Henceforth we

shall do so. Further we know from Proposition 1 that H∗ is non-decreasing and concave in

Cmax and hence that the marginal value of shelf space as determined by H∗ is positive and

decreasing in Cmax.

We can shed considerably further light on the value of shelf-space in the single product

category (k = 1) case by developing the analysis of sections 3 and 4 and noting from (3) , (4)

together with Proposition 2 and the comments following that

H∗T (m,ααα) = min
λ≥0

Hλ
T (m,ααα)

= min
λ≥0

{
TλCmax + Eπλ

[
T∑
τ=1

S∑
s=1

{
rsms (τ)

αs (τ)
− λcs

}
I [Gs,T−τ {ms (τ) , αs (τ)} > λ]

]}
.

(15)

In (15), Eπλ denotes an expectation taken over realisations of the system under policy πλ

for the Lagrangian relaxation which includes every product whose index exceeds λ in all

assortments. This is the policy which achieves Hλ
T (m,ααα) . Note that we use {ms (τ) , αs (τ)}

for the (random) belief state (parameters of the posterior gamma distribution) for product s

at time τ from the start of the selling season. It is trivial that Hλ
T (m,ααα) , as a function of

λ, is convex and piecewise linear with hinge points at product index values. We write

C (λ) = Eπλ

[
T∑
τ=1

S∑
s=1

csI [Gs,T−τ {ms (τ) , αs (τ)} > λ]

]
(16)
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for the total expected shelf-space used over the selling season by policy πλ. C (λ) is piecewise

constant and decreasing in λ with points of discontinuity at product index values. We define

λ (Cmax) = sup [λ;C (λ) > TCmax]

for the value of the shelf-space charge λ which comes closest (from below) to achieving

total expected shelf-space use over the season of TCmax. The charge λ (Cmax) must be an

index value, Gs,t (ms, αs), say. Use the notational shorthand P (Cmax) for the corresponding

product / time / state combination (s, t,ms, αs) and S (Cmax) for the collection of product

/ time / state combinations whose associated indices exceed λ (Cmax). It is straightforward

to show that

λ (Cmax) =
R∗ (S (Cmax) ∪ P (Cmax))−R∗ (S (Cmax))

C∗ (S (Cmax) ∪ P (Cmax))− C∗ (S (Cmax))
. (17)

In (17), R∗ (Q) and C∗ (Q) denote respectively the expected return and the expected shelf-

space use when only product / time / state combinations in Q are included in assortments.

We can then infer that the upper bound on expected revenues H∗T (m,ααα), regarded as a

function of Cmax can be expressed as

H∗T (m, α,Cmax) = λ (Cmax) {TCmax − C∗ (S (Cmax))}+R∗ (S (Cmax)) ,

with Tλ (Cmax) then recovered as the marginal value of shelf-space. Hence from (17) the

marginal value of shelf-space is recovered as the product of T and the ratio of the increment in

total expected return when adding the marginal product / time/ state combination P (Cmax)

to the candidate such combinations for inclusion in assortments to the corresponding

increment in total expected shelf-space usage. As Cmax increases so the index associated

with P (Cmax) decreases and, since this is the ratio λ (Cmax), also the marginal value of

shelf-space.

Please find in Figure 2 a plot of the marginal value of shelf space as given by the

discrete derivative of H∗ with respect to Cmax. The model used for the computation has

k = 1, T = 10,E [γ] = 10,Vγ = 5, S = 720 and c = {1, 2, 3}. The plot is over the full

extent of the range of Cmax, namely 0 ≤ Cmax ≤
∑S

s=1 cs = 1440. To avoid the need

for averaging over many samples, product rewards were not chosen randomly, but rather

distributed linearly over the interval [2, 8]. Figure 2 confirms numerically the theoretical

result in Proposition 1. The accompanying Figure 3 gives a corresponding plot of the second

discrete derivative of the upper bound H∗. While all these observations about the behavior

of the marginal value with respect to Cmax fully coincide with intuition, please note that it
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is the fact that we are able to determine its exact value numerically that allows us to draw

conclusions about optimal store sizes in the following sections.

0 200 400 600 800 1000 1200 1400
10

20

30

40

50

60

70

80

90

Cmax

dH
*  / 

dC
m

ax

Figure 2: Marginal value of shelf space

5.4 The impact of learning on the marginal value of shelf space

We now explore how enhanced prior uncertainty about the demand for products impacts

the marginal value of shelf-space and hence decisions to which that measure is relevant. We

shall gain insights on questions such as whether store managers who take account of demand

learning in their assortment planning are likely to need larger or smaller shops. Also on

whether and how this depends on the degree of uncertainty about the demand concerned.

As a benchmark we consider natural analogues of the optimal return J∗ and the La-

grangian upper bound H∗ under no learning. We define

J∗T,no-learn (m, α) = T max
u∈{0,1}S ,∑S

s=1 csus≤Cmax

S∑
s=1

rs
ms

αs
us (18)
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Figure 3: Second derivative of total value per maximum shelf space

and

H∗T,no-learn (m,ααα) = min
λ≥0

{
TλCmax + T

S∑
s=1

max

{
rs
ms

αs
− λcs, 0

}}
(19)

The differences H∗no-learn−J∗no-learn are easy to compute, are small and relate to the space unit

needs for the sales. Plainly, neither J∗no-learn nor H∗no-learn depend upon the prior variance

Vγ . They can be thought of as the values of J∗ and H∗ appropriate for the case Vγ = 0,

respectively.

In Figure 4 find a number of plots of H∗ against Cmax for the range 0 ≤ Cmax ≤∑S
s=1 cs = 1440 for a scenario in which k = 1, T = 10,E [γ] = 10, S = 720, c = {1, 2, 3} and

where product rewards are distributed linearly over the interval [2, 8]. Each continuous plot

corresponds to a different value of Vγ as indicated in Table 8. The dash-dotted magenta plot

is of H∗no-learn. Figures 5, 6 and 7 contain corresponding plots of respectively H∗ −H∗no-learn,

the discrete derivative of H∗ and the discrete derivative of H∗−H∗no-learn. The plain message
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Vγ color m α

100 green 1 0.1
50 red 2 0.2
25 cyan 4 0.4

12.5 black 8 0.8
5 blue 20 2

Table 8: The range of prior demand uncertainties used in the study
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Figure 4: Revenue plotted against Cmax for five prior demand uncertainties and a no-learning
option

of Figure 4 is that expected revenues will be greatest when the demand uncertainty is largest,

for given prior means. When demand uncertainty is high, our heuristic policies will enable

us to learn about high return products whose true demand rates are higher than the prior

mean and allow such products to feature strongly in assortments especially later in the

sales season. Figure 6 makes it clear that for the instances studied the value of policies

which feature active learning about demand rates is at its greatest for large prior variance

and available shelf-space which can accommodate between 30% and 70% of the available

products.
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Figure 5: Marginal revenue plotted against Cmax for five prior demand uncertainties and a
no-learning option

Figure 4 which features plots of the marginal value of shelf-space would potentially yield

solutions to problems of the form

max
Cmax

{H∗ (Cmax)−RCmax}

to determine the optimal store size (Cmax) when the rental charge for a single unit of

shelf-space for one unit of time is R. Solutions to such problems may be read off from the

plots in Figure 5 as an inverse mapping evaluated at R. We see that for retail markets in

which there is demand uncertainty, if rents are high (and so optimal store sizes are small)

then increased demand uncertainty means an increase in store size to support active learning

among high earning products. If rents are low (and optimal store sizes are large) then

increased demand uncertainty means a decrease in store size to mitigate the risk of poorly

performing products.

Please note that the findings in the section have implications that concern the full setup

of the supply chain. The choice towards implementing a system with demand learning

necessarily requires investment into a logistics configuration that allows rapid replenishment.

While outside the scope of this paper, out model might also be consulted in support of such

decision and whether or not the move towards a more costly, but also more reactive, supply

chain solution is beneficial for the firm.
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Figure 6: Surplus revenue of learning against no-learning plotted against Cmax for five prior
demand uncertainties

5.5 The Impact of Length of Selling Season (T ) on Optimal Store Size

Figure 8 contains plots of the marginal values of shelf space for a range of T , the length of

the selling season. The problem setting has k = 1,E [γ] = 10,Vγ = 5 and S = 51. Figure 9

has a corresponding typical plot of profit, namely revenue net of rent charged per unit of

shelf space. We assume rental cost is linearly increasing with a increment of 50 monetary

units per unit of shelf space. Recall that all reported revenues are per unit of time and

hence we see from Figure 9 that profit per unit of time increases with the length of the

selling season. This reflects the fact that mean revenues increase through the season as we

gain more exploitable information about true demand rates and so our assortments can

increasingly feature the best performing products. In this sense long selling seasons are a

good thing. Correspondingly, it is unsurprising that from Figure 9 the store size (Cmax)

maximising profit decreases with the length of the selling season. The rationale for this

is that a short selling season requires more active learning in its early stages and hence

larger stores. This is overwhelmingly the predominant insight. The cited example of small

grocery shops in major metropolitan areas is supported by this finding. Such shops certainly

face seasonality but once a store is established there is little further learning to be done

about demand rates and selling seasons are close to infinite. Our analysis then suggests that

optimal store sizes are small in such circumstances.
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Figure 7: Marginal surplus revenue of learning against no-learning plotted against Cmax for
five prior demand uncertainties

Figure 8 points to a different analysis when rents are extremely high. In this case optimal

store sizes are guaranteed small. If the selling season is also short then there will be very

little opportunity for learning and very few products will ever be candidates for inclusion

in assortments. A longer selling season opens up greater opportunity for profiting from

demand learning, brings many more products into play and opens up the possibility that

larger stores may be preferred.

6 Conclusions

The aim of this paper was to provide some guidance to managers on the interplay between

shelf-space, demand learning and dynamic assortment problem decisions faced by fast fashion

retailers. We have considered a stylized version of this problem, resulting in a finite horizon

multi-armed bandit model with Bayesian learning, that takes the space requirement of

the products into account. This has enabled us to calculate the value of capacity in such

a challenging environment, leading us to be able to describe in detail the profit and loss

resulting from capacity choice.

Further, we have numerically investigated the optimal store size for various uncertainty

values and lengths of selling season. Our model then provides one possible explanation

for the real-life observation that convenience stores, which allow long term learning for an
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Figure 8: Marginal value plotted against Cmax for six values of T, the length of the selling
season

assortment that may not change over long periods, tend to be smaller in size than those

shops which sell rapidly changing collections of seasonal items. Our model therefore provides

valuable guidance for managers by identifying these factors as key drivers for shelf-space

decisions. Managers in an environment where short term replenishment and assortment

changes are possible should look at the level of demand uncertainty and the length of selling

seasons when making initial decisions on store sizes. Overall, our paper shows that managers

must consciously adopt a new attitude towards demand risk. In an environment where fast

replenishment is possible and hence corrections to a store’s assortment can be accomplished

easily, demand uncertainty carries opportunities rather than risks. Managers who proceed

myopically and choose an assortment that they think will sell well on expectation, a strategy

that might have worked well in a supply chain setting with long lead times, will now leave

substantial profit on the table. Of course, the idea of the trade-off of exploration versus

exploitation and in particular the necessary change over time during the sales horizon if

crucial for all store managers to understand and should be part of any corporate training

effort.

While our stylized model already delivers valuable insight for managers who consider

upsizing or downsizing stores, there might still be features that could be included to improve

the quality of advice the model gives in practical situations. Future research, for example,
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Figure 9: Profit plotted against Cmax for six values of T, the length of the selling season

might aim to include substitution effects into the model. This seems to be a promising

direction, both from a practical and theoretical standpoint.



Glazebrook, Meissner and Schurr: Shelf-space, demand learning and assortment decisions 36

References

Aviv, Y., A. Pazgal. 2005. Dynamic pricing of short life-cycle products through active

learning. Olin School Business, Washington Univ., St. Louis, MO .

Brezzi, M., T.L. Lai. 2002. Optimal learning and experimentation in bandit problems.

Journal of Economic Dynamics and Control 27(1) 87–108.

Bultez, A., P. Naert. 1988. SH. ARP: shelf allocation for retailers’ profit. Marketing Science

7(3) 211–231.

Caro, F., J. Gallien. 2007. Dynamic assortment with demand learning for seasonal consumer

goods. Management Science 53(2) 276.

Chakrabarti, D., R. Kumar, F. Radlinski, E. Upfal. 2008. Mortal multi-armed bandits.

Daphne Koller, Dale Schuurmans, Yoshua Bengio, Leon Bottou, eds., NIPS – Neural

Information Processing Systems. MIT Press, 273–280.

Corstjens, M., P. Doyle. 1981. A model for optimizing retail space allocations. Management

Science 27(7) 822–833.

Fancher, L. 1991. Computerized space management: A strategic weapon. Discount Mer-

chandiser 31(3) 64.

Farias, V., R. Madan. 2008. The irrevocable multi-armed bandit problem. Working paper .

Fisher, M., A. Raman. 1996. Reducing the cost of demand uncertainty through accurate

response to early sales. Operations Research 87–99.

Ginebra, J., M.K. Clayton. 1995. Response surface bandits. Journal of the Royal Statistical

Society. Series B (Methodological) 57(4) 771–784.

Gittins, JC. 1979. Bandit processes and dynamic allocation indices. Journal of the Royal

Statistical Society. Series B (Methodological) 148–177.

Gittins, John, Kevin Glazebrook, Richard Weber. 2011. Multi-Armed Bandit Allocation

Indices. 2nd ed. Wiley.

Glazebrook, KD, C. Kirkbride, D. Ruiz-Hernandez. 2006. Spinning plates and squad systems:

Policies for bi-directional restless bandits. Advances in Applied Probability 95–115.

Hariga, M.A., A. Al-Ahmari, A.R.A. Mohamed. 2007. A joint optimisation model for

inventory replenishment, product assortment, shelf space and display area allocation

decisions. European Journal of Operational Research 181(1) 239–251.

Kök, A.G., M.L. Fisher, R. Vaidyanathan. 2008. Assortment planning: Review of literature

and industry practice. Retail Supply Chain Management 1–55.

Mahajan, A., D. Teneketzis. 2007. Multi-armed bandit problems. Foundations and Applica-

tions of Sensor Management 121–151.



Glazebrook, Meissner and Schurr: Shelf-space, demand learning and assortment decisions 37

Nafari, M., J. Shahrabi. 2010. A temporal data mining approach for shelf-space allocation

with consideration of product price. Expert Systems with Applications: An International

Journal 37(6) 4066–4072.

Nelder, JA, R. Mead. 1965. A simplex method for function minimization. The Computer

Journal 7(4) 308.

Saure, D., A. Zeevi. 2009. Optimal dynamic assortment planning. Tech. rep., Columbia

Business School.

Wartenberg, F., W. Gaul, R. Decker. 1997. Computergestützte Regaloptimierung im
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Yücel, E., F. Karaesmen, F.S. Salman, M. Türkay. 2009. Optimizing product assortment

under customer-driven demand substitution. European Journal of Operational Research

199(3) 759–768.


