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We consider a family of N items that are produced in, or obtained from, the same production facility. Demands are
deterministic for each item and each period within a given horizon of T periods. If in a given period an order is placed,
setup costs are incurred. The aggregate order size is constrained by a capacity limit. The objective is to find a lot-sizing
strategy that satisfies the demands for all items over the entire horizon without backlogging, and that minimizes the sum of
inventory-carrying costs, fixed-order costs, and variable-order costs. All demands, cost parameters, and capacity limits may
be time dependent. In the basic joint setup cost (JS) model, the setup cost of an order does not depend on the composition
of the order. The joint and item-dependent setup cost (JIS) model allows for item-dependent setup costs in addition to the
joint setup costs.
We develop and analyze a class of so-called progressive interval heuristics. A progessive interval heuristic solves a JS

or JIS problem over a progressively larger time interval, always starting with period 1, but fixing the setup variables of
a progressively larger number of periods at their optimal values in earlier iterations. Different variants in this class of
heuristics allow for different degrees of flexibility in adjusting continuous variables determined in earlier iterations of the
algorithm.
For the JS-model and the two basic implementations of the progressive interval heuristics, we show under some mild

parameter conditions that the heuristics can be designed to be �-optimal for any desired value of � > 0 with a running time
that is polynomially bounded in the size of the problem. They can also be designed to be simultaneously asymptotically
optimal and polynomially bounded.
A numerical study covering both the JS and JIS models shows that a progressive interval heuristic generates close-to-

optimal solutions with modest computational effort and that it can be effectively used to solve large-scale problems.
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1. Introduction
This paper addresses capacitated dynamic lot-sizing mod-
els. We consider a family of N items that are produced in
the same facility or replenished by the same outside sup-
plier. Demands are specified for each item and each period
of a given horizon of T periods. If in a given period an
order is placed for some or all of the items, setup costs
are incurred. The aggregate order size is constrained by a
capacity limit. The objective is to find a lot-sizing strat-
egy that satisfies the demands for all items over the entire
horizon without backlogging, and that minimizes the sum
of inventory-carrying costs, fixed-order costs, and variable-
order costs. All demands, cost parameters, and capacity
limits may be time dependent, reflecting, for example, gen-
eral time series of forecasts, customer orders, seasonal fluc-

tuations of the cost parameters, or changes in the capacity
due to new acquisitions or scheduled maintenance.
In the basic model, the setup cost for an order in any

given period only depends on the period index, but not on
the composition of the order. This assumption is satisfied
in many, if not most, practical applications, e.g., when the
setup cost represents the fixed cost of dispatching a truck
or barge or that of initiating a production run in a batch
production facility. We refer to this basic case as the joint
setup cost JS model. We extend the model to allow for
item-dependent setup costs in addition (or in lieu of) the
joint setup costs and refer to this generalized model as the
joint and item-dependent setup cost JIS model.
This capacitated dynamic lot-sizing model is one of

the most frequently used deterministic inventory-planning
models. It needs to be solved repeatedly for each level
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of a material requirements planning (MRP) or distribu-
tion requirements planning (DRP) system, with the orders
resulting from the capacitated lot-sizing problem(s) at a
given level being used as the demand input parameters for
the lot-sizing problem to be solved at the next level. The
model represents the fundamental challenge of capacity
requirements planning while assessing trade-offs between
the costs of holding inventories and the potential of exploit-
ing economies of scale in the procurement costs.
Based on a variety of applications for the BASF and

Procter & Gamble corporations as well as a production-
distribution problem for the so-called PAMIPS (1995) and
MEMIPS (1997) projects, Belvaux and Wolsey (2000,
2001) have developed a prototype optimization system
for a class of capacitated multi-item lot-sizing problems
that includes the JIS model. The system called bc-prod
uses the extended modelling and optimization library of
XPRESS as its engine, but allows for simplified prob-
lem specification and generates various cutting-plane con-
straints specific to the structure of lot-sizing problems.
Bixby (2001) in reviewing the progress and future chal-
lenges in CPLEX’s mixed-integer programming capabilities
emphasizes the importance of supply chain management
models and within this area, the class of capacitated multi-
item lot-sizing problems as being of prime importance and
awaiting algorithmic improvements.
The general model is very complex. Florian et al. (1980)

have in fact shown that even the single-item case �N = 1�
is NP-complete, as opposed to the uncapacitated ver-
sion that, for a planning horizon of T periods, is solv-
able in O�T logT � time (see Federgruen and Tzur 1991,
Wagelmans et al. 1992, and Aggarwal and Park 1993),
and in O�T � time under some mild assumptions on the
data. The difficulty arises in part because under capacity
restrictions, it may no longer be optimal to place an order
at the last possible time; in other words, it is not possi-
ble to confine oneself to so-called zero-inventory ordering
policies. Polynomial time algorithms have been developed
in the single-item case, but these tend to be time con-
suming and restricted to special parameter settings only;
see Florian and Klein (1971), Bitran and Yanasse (1982),
Chung and Lin (1988), and Van Hoesel and Wagelmans
(1996). Recently, Van Hoesel and Wagelmans (2001) (and
Gavish and Johnson 1990 for a more restricted version
of the model) developed a fully polynomial approximation
scheme for the general single-item model—i.e., an algo-
rithm that generates an �-optimal solution for any � > 0, in
an amount of time that is polynomial in the problem size
as well as 1/�.
When several items are involved �N � 2�, no efficient

solution methods are known, with the exception of Anily
and Tzur’s (2005) dynamic programming algorithm for the
case of constant capacities, which is of polynomial com-
plexity when the number of items N is fixed. (This paper
also deals with the case where multiple capacitated batches
may be ordered in each period. Anily and Tzur 2006

develop an exponential search algorithm for the same prob-
lem.) It is for this reason that even the more advanced man-
ufacturing resource planning systems (MRPII) start with
the determination of systemwide order releases without
consideration of capacity constraints, i.e., on the basis of
the solution (for each stage or item) of the uncapacitated
single-item dynamic lot-sizing model. It is only in the last
phase of the planning process that the elimination of capac-
ity conflicts is attempted by heuristic adaptations of the
basic schedules.
Federgruen and Tzur (1994a) have demonstrated for

single-item uncapacitated dynamic lot-sizing models that
optimal or close-to-optimal initial decisions can be made
by truncating the horizon after a relatively small number
of periods. A forecast horizon is found in which at most
three, and usually only two, orders are placed (the oblig-
atory order in the first period included). It is reasonable
to expect similarly short forecast horizons to continue to
apply when multiple items are considered and in the pres-
ence of capacity constraints, as long as the utilization rate
is not very close to one. See Federgruen and Tzur (1994a)
for a discussion of how these forecast horizon results relate
to capacitated models. This suggests that a close-to-optimal
solution may be generated by partitioning or truncating the
horizon.
We therefore develop and analyze a new class of so-

called progressive interval heuristics. A progressive interval
heuristic consists of J iterations. In iteration l, the problem
is solved to optimality for period 1 to some period Tl, but
all integer variables for periods 1 to Tl−� (for some � > 0)
and all continuous variables for periods 1 to some tl � Tl−1
are fixed at their optimal values after iteration l− 1. When
solving a given interval problem, we append, as bound-
ary conditions, the necessary and sufficient conditions for
a feasible extension to the remainder of the planning hori-
zon. The horizons are chosen such that 0= T0 � T1 � · · ·�
TJ = T and 0= t1 � t2 � · · ·� tJ , while � � Tl − Tl−1, the
number of periods by which the horizon in the lth iter-
ation is expanded. The complexity of any mixed-integer
programming method is largely determined by the number
of (unrestricted) integer variables. Choosing the parame-
ter � sufficiently small therefore ensures that the complex-
ity in each iteration grows only modestly. Thus, while the
heuristic solves a sequence of progressively larger problem
instances, exact solution methods remain viable with only
modest increases in computational effort.
We pay special attention to two extreme subsets of this

class of heuristics: (i) the strict partitioning heuristics (SP):
here tl = Tl−1 and Tl−Tl−1 = � , with the possible exception
of the last interval. The planning horizon is thus parti-
tioned into nonoverlapping intervals and in the lth itera-
tion, only the total cost pertaining to the newly appended
�-period interval are minimized, given the boundary condi-
tions (in particular ending inventories) generated in the pre-
vious �l− 1�st iteration; (ii) the expanding horizon heuris-
tics (EH): here tl = 0 for all l = 1 � � �  J − 1. A hybrid
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implementation would, e.g., set tl = �Tl − M�+ for some
window M . The trade-offs are clear: (EH) [(SP)] provides,
within the class of progressive interval heuristics, maximum
(minimum) flexibility at the expense of maximum (mini-
mum) incremental computational complexity in adjusting
the solution from each iteration to the next.
When applied to the JS model, the (SP) heuristic can

be implemented to be, simultaneously, asymptotically opti-
mal as T →� and to run in O�NT 2 log logT � time, pro-
vided some of the model parameters are uniformly bounded
from above or from below. With the same choice of �
and the same interval choices, the (EH) heuristic contin-
ues to be asymptotically optimal and runs in O�NT 3� time.
Our numerical study reveals, however, that it generally
results in significantly better solutions than the (SP) heuris-
tic. Both heuristics can also be designed as polynomial
time approximation schemes, i.e., to be of polynomial time
complexity and to guarantee an �-optimal solution for any
� > 0. To our knowledge, these are the first heuristics for
multi-item capacitated lot-sizing problems to possess these
properties.
While the above theoretical results refer to the JS model,

a comprehensive numerical study shows how in particular
the (EH) heuristic can be effectively used for the general
JIS model (with period- and item-dependent setup costs) as
well. For the latter, it is possible to find the optimal solution
for instances with up to 150–200 setup variables (e.g., when
N = 10 and T = 15 or 20). For these problem sizes, the
(EH) heuristic generates close-to-optimal solutions with an
optimality gap of up to 2% across a large set of parameter
combinations. (The (SP) heuristic, while significantly faster,
often generates solutions with optimality gaps above 10%.)
While exact optimality gaps cannot be measured for

larger problem instances, our theoretical results show that
(at least for the JS model) optimality gaps can be expected
to be even lower as T , the length of the planning horizon,
increases. We systematically evaluate the performance of
both the (SP) heuristic and the (EH) heuristic for problem
instances with the number of items varying from 10 to 25
and the horizon length varying from 10 to 50 in the JIS
model and up to 100 in the JS model. An earlier numer-
ical study for the single-item problem in Federgruen and
Tzur (1994b) shows that problems with up to 100 periods
can be solved by a slight variant of the (SP) heuristic with
an optimality gap of less than 7% and, on average, equal
to 2%.
Summarizing, the main contributions of this paper are

(i) the design of a new class of heuristics; (ii) the demon-
stration that, for the JS model, both the (SP) and (EH)
heuristics can be designed to be of low polynomial com-
plexity as well as asymptotically optimal; (iii) the proof
that for finite T , both the (SP) and (EH) heuristics can be
designed to be polynomial time approximation schemes;
and (iv) the demonstration that a progressive interval
heuristic generates close-to-optimal solutions with modest
computational effort, even for large-scale problems.

While our theoretical and numerical analysis are based
on the JS and JIS models, we believe that the effectiveness
of the progressive interval heuristics bodes well for its use
in general multiperiod production and inventory problems.
The remainder of this paper is organized as follows:

Section 2 reviews the relevant literature. In §3, we intro-
duce the JS model and its notation. In §4, we describe the
new class of heuristics and develop worst-case bounds for
their optimality gaps. In §5, we discuss how each interval
problem, which arises in an iteration of the heuristic, can
be solved effectively via a general-purpose mixed-integer
programming method or a tailor-made branch-and-bound
method. This allows us to identify implementations that
are simultaneously asymptotically optimal as well as of
very reasonable and polynomial complexity. Finally, §6 dis-
cusses extensions to the general JIS model as well as the
numerical study.

2. Literature Review
In this section, we provide a brief review of the existing
literature, beyond the papers mentioned in the introduction.
Chen et al. (1994) and Shaw and Wagelmans (1998)

developed two relatively efficient pseudopolynomial solu-
tion methods for the general single-item model. Their
extensions to the multi-item model result in dynamic pro-
grams with a state space of dimension N and larger, and are
therefore entirely unusable except for the smallest possible
number of items N . As mentioned, even for the single-
item model, this paper’s heuristics are, to our knowledge,
the first to be asymptotically optimal and of polynomial
complexity.
All other existing methods are based on heuristics, and

none has provable bounds for the associated optimality gaps.
These heuristics can be divided into simple constructive
heuristics and mathematical programming-based heuristics.
The constructive heuristics include “greedy methods” in
which a specific sequence is proposed to assign the capacity
of a given period to satisfy its or later demand, e.g., Eisen-
hut (1975), Lambrecht and Vander Eecken (1978), Dixon
and Silver (1981), and Maes and Van Wassenhove (1986).
Other constructive heuristics start with the solution of the
uncapacitated model and search for a feasible production
schedule by simple shifting routines, e.g., Van Nunen and
Wessels (1978), Dogramaci et al. (1981), Nahmias (1989),
and Karni and Roll (1982).
The mathematical programming-based heuristics employ

linear programming, Lagrangean relaxation, cutting-plane
methods, and column generation techniques. Examples in-
clude Baker and Dixon (1978), Eppen and Martin (1987),
Pochet (1988), Leung et al. (1989), Martin (1987), and
Trigeiro et al. (1989). We refer to Maes and van Wassen-
hove (1988), Salomon (1990), and Kuik et al. (1994) for
detailed surveys of these methods up to 1994.
State-of-the-art solution methods include, in addition to

the bc-prod system mentioned in §1 (Belvaux and Wolsey
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2000, 2001), those of Stadtler (2003) and Suerie and
Stadtler (2003). Interestingly, these methods all apply vari-
ants of the (EH) heuristic: In the “fix-and-relax” heuristic,
each consecutive problem instance expands the horizon of
the previous instance by appending the same number ��� of
periods to its tail. The “internally rolling schedule heuris-
tics” in Stadtler (2003) and Suerie and Stadtler (2003) use
constant interval increments� � . In each problem instance,
instead of imposing boundary conditions that are neces-
sary and sufficient for a feasible extension until the end
of the full planning horizon, the authors include the peri-
ods beyond the end of the current interval, however, with
all binary variables in these periods treated either as con-
tinuous variables (bc-prod) or set equal to one (Stadtler
2003, Suerie and Stadtler 2003). The heuristics in the lat-
ter two papers substitute all cost parameters for the after-
the-interval periods by zero, with the possible exception
of variable overtime cost rates, in case the capacity con-
straints may be violated by scheduling overtime. (Addi-
tional heuristic changes are applied to an interval’s last set
of periods.)
Federguen and Tzur (1994c) describe an effective heuris-

tic for the so-called joint replenishment problem (JRP),
which is similar to the (SP) heuristic. (This heuristic can
be designed to be asymptotically optimal and of polyno-
mial complexity, under specific parameter conditions.) The
(JRP) model is the special case of the JIS model, which
arises when no capacity constraints prevail. Federgruen and
Tzur (1999) describe a general framework for a variant of
the (SP) heuristic, with applications to other types of lot-
sizing problems.

3. The Multi-Item Model with Joint Setup
Cost JS

In this section, we discuss our basic model JS with joint
setup costs only. We use the index i ∈ �1 � � � N � to distin-
guish between items and the index t ∈ �1 � � �  T � to distin-
guish between periods. For i = 1 � � � N and t = 1 � � �  T ,
we specify the following parameters:

dit = demand for item i in period t �dit � 0�;
Dt = aggregate demand in period t =∑N

i=1 dit;
cit = variable per-unit order cost for item i in period t;
hit = cost of carrying a unit of inventory of item i at the

end of period t;
Kt = setup cost incurred when an order is placed in

period t; and
Ct = order capacity, i.e., the maximum number of units

that can be ordered in period t.

Without loss of generality, we define the units of the
items such that ordering one unit of an item consumes one
unit of capacity. We define the following decision variables:

xit = order size for item i in period t, i = 1 � � � N , t =
1 � � �  T ;

Yt =
{
1 if

∑N
i=1 xit > 0

0 otherwise
t = 1 � � �  T �

Iit = ending inventory of item i in period t, i = 1 � � � N ,
t = 1 � � �  T �

Let I 0t = the minimum aggregate inventory at the end
of period t, such that a feasible production/inventory plan
exists for periods t+1 � � �  T . These minimum stock levels
are easily computed from the following recursion, which
can be verified by induction:

I 0t = �Dt+1 −Ct+1 + I 0t+1�
+ t = 12 � � �  T − 1

with I 0T = 0� (1)

The multi-item model can thus be formulated as follows:

(P) z∗ =min
{ T∑

t=1

[
KtYt +

N∑
i=1

�citxit +hitIit�

]}
(2)

s.t. Iit = Ii�t−1� + xit −dit

i= 1 � � � N  t = 1 � � �  T  (3)
N∑

i=1
xit �CtYt t = 1 � � �  T  (4)

N∑
i=1

Iit � I 0t  t = 1 � � �  T  (5)

xit � 0� Iit � 0� Yt ∈ �01�� (6)

The above formulation is often referred to as the network
formulation. The plant location formulation is an alternative
that disaggregates the production quantities �xit� into �xist�
with xist = the amount of item i ordered in period s to
satisfy demand in period t.

4. Progressive Interval Heuristics:
Worst-Case Bounds for
Optimality Gaps

A progressive interval heuristic solves a sequence of J
problem instances. The first instance considers the capaci-
tated lot-sizing problem that arises when restricting oneself
to the first T1 periods, i.e., it solves (P) with T replaced
by T1. In each of the subsequent instances, a given num-
ber of periods �� is appended to the tail of the previous
planning horizon. In the hth iteration, a lot-sizing problem
�J̃Sh� is solved on the complete interval �1 � � �  Th�, albeit
that all Y variables of periods 1 � � �  Th−� are fixed at their
optimal values in the �h− 1�st iteration, i.e., when solving
�J̃Sh−1�. Recall that Th−Th−1 � � , i.e., Th−� � Th−1. Thus,
the number of unrestricted binary variables in each iteration
remains constant, i.e., equal to � . Moreover, the aggregate
ending inventory in period Th is constrained from below by
the I 0-value.
Different progressive interval heuristics give varying

amounts of flexibility to the continuous variables in each of
the J problem instances. As mentioned, we focus in partic-
ular on two extremes: under the strict partitioning heuristics
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(SP), all interval increments �Tl−Tl−1�= � , with the possi-
ble exception of the last interval. Also, among the continu-
ous variables, only those pertaining to the last � periods of
the current planning horizon are allowed to be chosen freely
(i.e., tl = Tl − � = Tl−1) without any restrictions beyond
those implied by the constraints of (P); all other continuous
variables are fixed at their optimal value in the previous
problem instance.
Under the (EH) heuristics, all of the continuous vari-

ables are allowed to be varied fully (subject, of course,
to constraints (3)–(6)), i.e., tl = 0; moreover, this class
allows for Tl − Tl−1 < � , l = 1 � � �  J − 1. If the step sizes
�Tl − Tl−1� < � , even many of the setup decisions deter-
mined in one iteration of the algorithm may be revisited
in subsequent iterations on the basis of additional demand,
cost, and capacity information pertaining to additional peri-
ods. (We have observed that it is often effective to append
a single period as one progresses from one interval to the
next, i.e., Tl − Tl−1 = 1.)
Various intermediate implementations may be envi-

sioned; for example, a (moving) window of M > � periods
may be used such that the continuous variables in (up to)
the last M periods are unrestricted, as opposed to the last �
(SP) or all periods under (EH). Federgruen and Tzur (1999)
consider a slight variant of (SP) under which the size and
the composition of the last-(or several of the last) order
periods in the previously solved iteration may be varied,
along with the production quantities of the newly appended
periods.
Let zSP and zEH denote the cost of the solutions found

by the (SP) and the (EH) heuristics for a given choice of
�Tl tl ��. We now derive worst-case bounds for their opti-
mality gaps, under mild conditions for the cost, demand,
and capacity parameters. We first derive a lower bound
for z∗ as an explicit function of T . It is quite simple
to obtain a lower bound when assuming that all periods’
demands are uniformly bounded away from zero; however,
to allow for sporadic demands, we derive an alternative
bound, merely assuming that the cumulative demand over a
large enough time interval is uniformly bounded away from
zero. Its proof, while similar to that in Federgruen and Tzur
(1994c), requires major adjustments to reflect the capacity
limits.

Theorem 1. Assume that there exists a positive integer
" � 1, and for all i= 1 � � � N , positive constants di∗ such
that

dit + · · ·+di�t+"−1� � "di∗

i= 1 � � � N  t = 1 � � �  T − "+ 1 (7)
T∑

t=1
dit � Tdi∗ i= 1 � � � N � (8)

In addition, assume that there exist constants K∗ and C∗,
and for each i = 1 � � � N , constants hi∗ and ci∗ such
that Kt � K∗Ct � C∗, hit � hi∗, and cit � ci∗ for all

t = 1 � � �  T . Let d∗ = ∑N
i=1 di∗, # = ∑N

i=1 ci∗di∗, H∗ =
�1/2�

∑N
i=1 hi∗di∗. Then, z∗ � %T , where

%
def= #+



K∗
2"

if

√
H∗

K �

1
2"



�2
√

�K∗ + 2H∗"2�H∗ − 3H∗"�

if
d∗
C∗ <

√
H∗

K <

1
2"



(
�K∗ + 2H∗"2�d∗

C∗ + H∗C∗

d∗
− 3H∗"

)
if

√
H∗

K �

d∗
C∗ <

1
2"

�

(9)

Proof. We obtain a lower bound by replacing all fixed-
order costs by K∗, all capacities by C∗, and for each
item i = 1 � � � N , all variable-order cost rates by ci∗, and
holding-cost rates by hi∗. We refer to the resulting problem
as the transformed problem. Consider a solution in which
m� 1 orders are placed. For l= 1 � � � m, let nl denote the
number of periods in the lth order cycle, i.e., the interval
that contains the lth order period and all subsequent periods
prior to the next order interval (if any). (The mth interval
terminates with period T .)
We first derive a lower bound for the total holding costs

incurred in a single order cycle of n periods in the trans-
formed problem. Note that zero-inventory ordering may fail
to be optimal in the capacitated model, i.e., the starting
inventory in the first period may be positive for some or
all items. However, the holding cost in the order cycle is
clearly bounded from below by assuming that the starting
inventory equals zero.
Renumber the periods in this cycle as 1 � � �  n and let

n = (" + � with 0 � � < ", i.e., ( = �n/"�. Fix i =
1 � � � N . Observe by our assumption that in each of the
intervals ��j−1�"+�+1 j"+�� for j = 1 � � � (, at least
"di∗ units are demanded for item i. Being ordered in or
after period 1, the lowest holding costs for these demands
arise when "di∗ units are demanded in period �j − 1�" +
�+1 (i.e., in the first period of this interval) and none in the
remaining periods of the interval ��j−1�"+�+1 j"+��.
It follows that the holding costs in a single order cycle of n
periods are bounded from below by∑
i

hi∗"di∗
(−1∑
j=0

�� + j"�

=∑
i

hi∗"di∗

[
(� + 1

2
"(�(− 1�

]
=∑

i

hi∗"di∗

[⌊
n

"

⌋
� + 1

2
"
⌊n

"

⌋(⌊
n

"

⌋
− 1

)]

�
∑
i

1
2
hi∗"

2di∗

[(
n

"
− 1

)+(
n

"
− 2

)+]
= g�n�

where g�x�
def= H∗"2��x/"�− 1�+��x/"�− 2�+ is convex.
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This implies the following lower bound for the total cost
over the complete horizon:

z∗�#T +min
m

{
K∗m+min

nl

[ m∑
l=1

g�nl� +
m∑

l=1
nl=T

]∣∣∣∣m�
Td∗
C∗

}

=#T +min
m

{
K∗m+�H∗"

2�m

(
T

m"
−1

)+(
T

m"
−2

)+ ∣∣∣∣ Td∗

C∗

�m�max
(

Td∗

C∗ 
T

2"

)}
� (10)

The lower bound for m may be imposed because when
mC∗ < Td∗, it is infeasible to satisfy all demand. The
equality in (10) follows because, by the convexity of g�·�,
equal values nl = T /m, l = 1 � � � m, achieve the mini-
mum to its left. (The upper bound for m may be imposed
because the minimand to the right of (10) is increasing for
m > T /2".) Equation (9) follows from (10), noting that for
m� T /2", the �·�+ operators may be ignored. �

We now derive an upper bound for the optimality gap
of the (SP) and (EH) heuristics. The bound is established
under the parameter conditions of the lower bound Theo-
rem 1, a uniform lower (upper) bound for the capacities
(holding-cost rates) and a condition that specifies that a uni-
form slack capacity exists over any cycle of " periods, i.e.,
(S) there exists a constant , > 0 and an integer - such

that
t+-∑

r=t+1
Cr �

t+-∑
r=t+1

Dr +, for all t = 0 � � �  T − -� (11)

We first need the following lemma, which shows that under
condition (S) a uniform upper bound prevails for all mini-
mum reserve stocks �I 0t �:

Lemma 1. Let condition (S) hold and assume that a con-
stant C∗ exists such that Ct �C∗. Then,

I 0t �U
def= -C∗ −, t = 1 � � �  T � (12)

Proof. By repeated substitutions in (1), we get for all t =
1 � � �  T ,

I 0t = max
t+1�s�T

[ s∑
r=t+1

�Dr −Cr�

]+

= max
t+1�s�min�T  t+-−1�

[ s∑
r=t+1

�Dr −Cr�

]+

� max
t+1�s�min�T  t+-−1�

s∑
r=t+1

Dr �

min�T  t+-−1�∑
t=t+1

Dr

where, by (S), the second equality follows from

s∑
r=t+1

�Dr −Cr��
s−-∑

r=t+1
�Dr −Cr� for s � t+ - .

Thus, I 0t can be bounded by a sum of - consecutive aggre-
gate demands, hence, by a sum of - consecutive capacity
values minus , , given (11). This proves (12). �

Theorem 2. Let (S) hold. Assume that there exists an inte-
ger " � 1, and for each i = 1 � � � N , a constant di∗ such
that

�dit + · · ·+di t+"−1�� "di∗ t = 1 � � �  T − "+ 1 (13)

T∑
t=1

dit � Tdi∗� (14)

In addition, assume that there exist constants K∗, K∗, C∗,
and C∗, and for each i = 1 � � � N , constants hi∗ h∗

i  ci∗,
and c∗i such that for all t � 1, K∗ �Kt �K∗, C∗ �Ct �C∗,
hi∗ � hit � h∗

i , and ci∗ � cit � c∗i . Let 0c∗ =maxi�c
∗
i − ci∗�,

1 = �K∗/C∗� + 0c∗, h∗ = mini hi∗, 0h∗ = max�h∗
i − hi∗�,

and D∗ =
∑N

i=1 di∗. Let % be defined as in (9) and

21 =K∗ +C∗
(⌊

1

h∗

⌋
1− 1

2

⌊
1

h∗

⌋(⌊
1

h∗

⌋
+ 1

)
h∗

)
 (15)

22 =U

[
�0c∗ +K∗�+

(⌊
U

,

⌋
+ 1

)
-0h∗

+
(

0c∗ +K∗

h∗

)
0h∗

]
 (16)

2= 21 +22� (17)

Then,

�a�
zSP − z∗

z∗
�

�J − 1�2
%T

 �b�
zEH − z∗

z∗
�

�J − 1�2
%T

�

Proof. (a) We show that an optimal solution of the com-
plete problem can be transformed, in two phases, into one
that is achievable by the (SP) heuristic, adding at most
�J − 1�2 to the total cost. In Phase I, the optimal solution
is transformed into one with all intervals’ ending aggre-
gate inventory equal to their minimum I 0-level. In Phase II,
the composition of the reserve stock at the end of each of
the intervals is made identical to that of the solution of the
(SP) heuristic.
To describe the transformation in Phase I, renumber the

periods in the first l intervals from 1 � � �  Tl, starting with Tl

and going backwards—i.e., period t is now renumbered
as Tl − t + 1, t = 1 � � �  Tl. With this numbering, period t
occurs t periods before the end of the lth interval.
In the optimal solution, let Qir denote the number of

units of item i ordered in period r to satisfy demands
in some future period in the �l + 1�st or later intervals
�i = 1 � � � N  r = 1 � � �  Tl�. Also, let Qr =

∑
i Qir . The

starting aggregate inventory of the �l + 1�st interval is
=∑Tl

r=1 Qr > I 01 . Because a feasible solution exists for
�JSl+1� with a starting inventory of I 01 only, it is feasible to
postpone the orders for �

∑Tl

r=1 Qr�− I 01 units to periods that
belong to the �l+ 1�st interval itself. The transfer of these
order quantities requires at most ��∑Tl

r=1 Qr� − I 01 �/C∗�
additional setups in the �l + 1�st interval, and therefore
at most ��∑Tl

r=1 Qr�− I 01 �/C∗�K∗ � �∑Tl

r=1 Qr�/C∗�K∗ �

K∗ + �K∗/C∗�
∑Tl

r=1 Qr in additional setup costs. An upper
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bound for the total additional costs due to the transfer of
these order quantities is therefore given by

max
{ N∑

i=1

Tl∑
r=1

[
c∗i − cir −

r∑
s=1

hi s

]
Qir

+ K∗

C∗

Tl∑
r=1

N∑
i=1

Qir +K∗
∣∣∣∣0� N∑

i=1
Qir �Cr ∀ r

}
�

This linear progam decomposes into Tl single-constraint
problems. Each is straightforwardly solved in closed form:
For each r = 1 � � �  Tl, set Qir = Cr for any item i whose
objective function coefficient is largest, unless all �Qir + i=
1 � � � N � variables have negative coefficients, in which
case it is optimal to set Qir = 0 for all i = 1 � � � N . This
results in the upper bound K∗ + ∑Tl

r=1 maxi��K
∗/C∗� +

c∗i − �ci r + hi r + hi r−1 + hi1��
+Cr � K∗ + ∑Tl

r=1�1 −
rh∗�+Cr �K∗ +C∗∑4

r=1�1− rh∗��K∗ +C∗�41− �1/2� ·
4�4+ 1�h∗� = 21, where 4 = �1/h∗� is an upper bound
on the number of periods in which inventory may be held
prior to the lth interval for use during the lth or later
intervals. (The first equality follows from the fact that the
(4+1)st until the Tlth term in the sum to its left vanishes.)
Apply the transfer process sequentially to the intervals l=
J − 1 J − 2 � � � 1, to end up with a solution in which all
intervals’ ending aggregate inventory equals the minimum
I 0-level and whose cost exceeds z∗ by at most �J − 1�21.
Let Ll denote the longest shelf life of any unit in stock at

the end of the lth interval l= 1 � � �  J − 1. In Phase II, we
transform the Phase I solution by changing the item identity
of at most I 0Tl

units in stock at the end of period Tl, without
any additional changes in the order and inventory plan. This
maintains feasibility, leaves total setup costs unaltered, and
adds at most

J−1∑
l=1

I 0Tl
�0c∗ +Ll0h∗� (18)

variable-order and holding costs. In view of Lemma 1, to
show that the summand in (18) is bounded by 22, it suffices
to show that Ll � ��U/,�+ 1�- + �0c∗ +K∗�/h∗ def= L̄.
Assume first that at least one of the periods t∗ ∈ �Tl −

��U/,�+1�-+1 � � �  Tl� has slack capacity (in the Phase I
solution). In this case, if one of the I 0Tl

units in the reserve
stock has a shelf life of more than L̄ periods, the order-
ing of this unit can be postponed until t∗, thereby reduc-
ing inventory costs by at least h∗�L̄ − ��U/,� + 1�-� =
h∗��0c∗ +K∗�/h∗�= 0c∗ +K∗, offsetting any increase in
the variable-ordering cost (and possibly one setup cost),
due to the postponement. Thus, if any of the I 0Tl

units
has a shelf life larger than L̄, a full-capacity order is
placed in each period of the interval �Tl − ��U/,� + 1� ·
- + 1 � � �  Tl�, resulting in an ending inventory of at least∑Tl

t=Tl−��U/,�+1�-+1�Ct − Dt� � ��U/,� + 1�, > U units,
which contradicts Lemma 1.

(b) Let I �l� denote the N -vector of ending inventories at
the end of the lth interval, as determined in the lth itera-
tion of the (EH) heuristic, l = 1 � � �  J , and let �Y EH

t + t =
1 � � �  T � be the Y -vector chosen by this heuristic. Trans-
form the optimal solution into a solution 6�II� with cost
value z�II� via Phase I and Phase II transformations, as in
part (a), except that in Phase II the lth interval’s vector
of ending inventories is now matched to I �l�. With T−1 =
T0 = 0, let 6�l� be an optimal solution of the mixed-integer
program �Pl�, where l= 0 � � �  J :

�Pl�+ z�l� =min�2� (19)

s.t.

(3)–(7) (20)

IiTh
= I

�h�
i  i= 1 � � � N 

h=max�l− 11� max�l1� l+ 1 � � �  J  (21)

Yt = Y EH
t  t = 1 � � �  Tl−1� (22)

�Pl∗+1� is obtained from �Pl∗� by simultaneously adding the
constraints Yt = Y EH

t , t = Tl∗−1 + 1 � � �  Tl∗ and eliminating
the constraints IiTl∗−1 = I

�l∗−1�
i , i = 1 � � � N . Because 6�l∗�

satisfies (21) and (22) for l= l∗—i.e., because it maintains
the same ending inventories at the end of the l∗th interval
as the EH heuristic does at the end of the l∗th iteration,
and because it is restricted to the same order periods in
the first �l∗ − 1� intervals as the (EH) heuristic is in its
l∗th iteration—it follows that both 6�l∗� and the solution
obtained by the (EH) heuristic in its l∗th iteration, minimize
total costs over the first Tl∗ periods subject to constraints
(21)–(22) with l= l∗. This implies that 6�l∗� can be chosen
such that Yt = Y EH

t , t = Tl∗−1 + 1 � � �  Tl∗ , and hence Yt =
Y EH

t for all t = 1 � � �  Tl∗ . Thus, 6
�l∗� is a feasible solution

of �Pl∗+1� so that

zEH=z�J �
�z�J−1�

� ···�z�0�
�z�II�

�z∗+�J −1�2 (23)

where the equality follows from the (EH) solution optimiz-
ing P�J �, the last inequality from part (a), and the one before
that from 6�II� being a feasible solution of P�0�. �

Remark. The proof of Theorem 2 reveals that a tighter
bound, with 2 replaced by a smaller value, may be com-
puted in any given instance, once the number of intervals
and their lengths have been specified.

5. Solution Methods for a Single-Interval
Problem: Polynomial and
Asymptotically Optimal Heuristics

We now discuss how a single-interval problem in an iter-
ation of the progressive interval heuristic can be solved
effectively. We have found that the general purpose branch-
and-bound method embedded in CPLEX is very effective
to solve JS problems; see §6 for details. Alternatively, sev-
eral tailor-made branch-and-bound methods can be used.
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Below, we discuss three such methods. Two of them have
the distinct advantage over the CPLEX-based algorithm
that their complexity, for the (SP) heuristic, is of the order
O�2�P���� with P�·� a polynomial in � . (The complexity
is O�2�P�T �� for the (EH) heuristic.) Theorem 2 shows
that the two heuristics can be designed to be asymptotically
optimal, e.g., by choosing every (except possibly the last)
interval increment Tl − Tl−1 = � , l= 1 � � �  J − 1, with

� = 8 logT � for some 8 > 0 (24)

or, more generally, by choosing � = o�T � as T → �.
(The last increment Tl − Tl−1 = T − ��T /����.) Thus, by
choosing � as in (24), we obtain an algorithm that is
simultaneously asymptotically optimal and of polynomial
complexity.
Our three branch-and-bound methods are based on three

bounds for the value of z∗:
zLB1 = minimum cost value in the uncapacitated model,

i.e., ignoring constraints (4),
zLB2 = max:�0 z�:�, where
z�:�= min�

∑T
t=1�KtYt +

∑N
i=1�citxit + hitIi� + :t�CtYt −∑

i xit�� s.t. �3� �5� �6��.
In other words, zLB2 is the value of the Lagrangean dual

associated with the relaxation of the capacity constraints
(4). Clearly, zLB2 � z�0�= zLB1 .
zLB3 = zLBvar + zLBfix , where

zLBvar = minimum value of the variable costs, i.e., minimum
cost value when all setup costs are reduced to zero,
and

zLBfix = minimum value of the fixed (setup) costs required
to satisfy all demands when in each period t the
best observed, and yet unused, setup cost and
capacity value can be used (instead of only Kt and
Ct being available).

Therefore, zLBfix is a lower bound on the minimum value
of the fixed costs, i.e.,

z∗ �min
{ T∑

t=1

[ N∑
i=1

citxit +
N∑

i=1
hitIit

]
s.t. (3)–(6)

}

+min
{ T∑

t=1
KtYt s.t. (3)–(6)

}
= zLBvar + zLBfix = zLB3 � (25)

In the single-item case (N = 1), zLB1 can clearly be eval-
uated via any of the solution methods for the single unca-
pacitated model. (This can be done in O�T logT � time;
see the introduction.) In the multi-item case, evaluation of
zLB1 reduces to the solution of the joint replenishment prob-
lem (JRP) without item-specific setup costs. In the impor-
tant special case where no speculative motives for carrying
inventory prevail, the complexity of this method is easily
verified to be O�NT 2�; see Federgruen and Tzur (1994c).
For general variable holding and order costs, any of the
known lower bounds for the JRP can be invoked, e.g.,

the bound in Federgruen and Tzur (1994c), which requires
O��N +K∗�T logT � time where K∗ =maxt Kt .
To evaluate zLB2 , the above methods need to be

embedded in an unconstrained optimization technique that
searches for the maximizing vector :.

zLB3 is the sum of two components: zLBvar is the minimum
cost network flow in a network of special structure. Ahuja
and Hochbaum’s (2004, §6.3) algorithm solves this prob-
lem in O�NT logT � time. To compute zLBfix , observe that it
is optimal to sequentially postpone setups until the last fea-
sible period because in any given period, any prior (unused)
capacity and setup cost value may be chosen. Thus, assume
that the first j setup periods t�1� t�2� � � �  t�j� have been
determined, together with their adopted capacities and
setup cost values; the next setup period t�j + 1� (if any)
is then obtained as the first period t after t�j� for which∑t

s=1 Ds is in excess of the sum of the adopted capacities
for periods t�1� � � �  t�j�; it is then optimal to assign to this
setup period the best observed, and yet unused, setup cost
and capacity value. This sequence of setup periods (and
associated setup costs and capacity values) can be deter-
mined in O�T logT � time by maintaining two ordered lists
of unused capacity and setup cost parameters. Thus, zLB3

can be computed in O�NT logT � time.

5.1. Branch-and-Bound Methods

Our branch-and-bound (b&b) algorithm bears the following
similarities to that in Federgruen and Tzur (1994c): (1) it
implicitly enumerates all possible subsets of the � undeter-
mined order periods; (2) it characterizes each node of the
b&b tree by a partition of the periods into sets S+, S−, and
S0, with S+ the set of periods in which one is committed
to place an order, S− the set in which no order is allowed,
and S0 the set of periods where no decision is fixed yet;
(3) the root of the tree has all � periods in the set S0 and
every nonterminal node has two successor nodes, one with
an additional period shifted from S0 to S+ and one with the
same period shifted to S−. (This period is selected accord-
ing to a specific branching rule.) At any of the leaf nodes,
for a given set of order periods, the problem reduces to a
polynomially solvable network problem.
Compared to Federgruen and Tzur (1994c), a different

lower bound is used to evaluate each node of the b&b tree.
For all r = 123, and a given node characterized by S+,
S−, S0 let ZLBr = ∑

i∈S+ Ki+ the value of zLBr when the
setup cost for periods i ∈ S+ �S−� is changed to zero ���
and the capacity for periods i ∈ S− is changed to zero. Each
of the values ZLB1 , ZLB2 , and ZLB3 can be used as a lower
bound for any node in the tree; ZLB3 gives the optimal
solution value for nodes at the bottom of the tree, where
S0 =�.
We now conclude that both the (SP) and (EH) heuristics

can be implemented as an asymptotically optimal and poly-
nomially bounded heuristic, e.g., if all intervals are chosen
as in (24).
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Corollary 1. Consider the (SP) heuristic with interval
lengths specified by (24) and with each interval problem
solved by the above branch-and-bound procedure.
(a) In the general multi-item case, the heuristic has

complexity O�NT 2 log logT � if each node is evaluated by
the value ZLB3 and O��N + K∗�T 2 log logT � if evaluated
by ZLB1 .
(b) In the multi-item case without speculative motives,

the heuristic has complexity O�NT 2 logT � if each node in
the branch-and-bound tree is evaluated by ZLB1 .
(c) In the single-item case �N = 1�, the heuristic has

complexity O�T 2 log logT � if each node in the branch-and-
bound tree is evaluated by ZLB1 or ZLB3 .
(d) Assume that the parameter conditions of Theorem 2

are satisfied. The heuristic is asymptotically optimal as T
increases to infinity; the convergence of the optimality gap
to zero is uniform in N .

Proof. Parts (a)–(c): The (SP) heuristic requires, to com-
pute its solution for any given interval, at most 2�−1 exact
evaluations, one for each leaf of the branch-and-bound tree,
and 2�−1 lower-bound evaluations of the other nodes of the
tree. Exact evaluation of a leaf takes O�N� log �� time, as
shown when discussing zLBvar . Also, � =O�logT � and J =
O�T / logT �. The complexity bounds in parts (a)–(c) thus
follow from those associated with a single evaluation of
ZLB1 or ZLB3 in the nonleaf nodes of the branch-and-bound
tree, i.e., O�N� log ��, O��N + K∗�� log ��, O�N�2�, and
O�� log ��, respectively. Part (d) follows from the discus-
sion at the start of §5. �

Thus, the (SP) heuristic can be designed to be asymptot-
ically optimal with a complexity that grows only somewhat
faster than quadratically in T , and linearly in the number
of items N . The (EH) heuristic has larger complexity. For
example, when implemented with interval increments of
size � and � given by (24), its complexity is O�NT 3� when
each interval problem is solved by the above branch-and-
bound procedure based on the lower bound ZLB3 . On the
other hand, the (EH) heuristic tends to generate signifi-
cantly superior solutions, as we shall demonstrate in the
next section.
The heuristics can also be designed as polynomial ap-

proximation schemes.

Corollary 2. Assume that the parameter conditions of
Theorem 2 are satisfied. For any given � � 0, choose � =
min�T 2/�%� and all interval increments Tl − Tl−1 = �
(with the possible exception of the last interval increment,
which is of length T −�T /���). Assume that each interval
problem is solved by the above branch-and-bound proce-
dure, with each node evaluated by zLB3 . The (SP) and (EH)
heuristics result in an �-optimal solution with a complexity
bound that is O�NT � and O�NT 2 logT �, respectively.

Proof. The optimality gap result is obvious if � = T . Oth-
erwise, by Theorem 2, for PI= SP and PI= EH,

zPI − z∗

z∗
�

�J − 1�2
T%

�
�T /��− 1�

T

2

%
�

�T /��2

%T
= ��

The complexity counts are immediate from the proof of
Corollary 1. �

6. The General JIS Model and Numerical
Results

In this section, we consider a generalization in which the
fixed setup cost associated with an order depends on the
specific items included in that order. More specifically,
we assume that in addition to the period-dependent (joint)
setup cost Kt , incurred for any order in period t, an item-
specific setup cost is incurred for any item included in the
order. Thus, let
#it = setup cost incurred when ordering item i in period t,

i= 1 � � � N , t = 1 � � �  T .
The mixed-integer programming formulation in §2 is

easily adjusted to incorporate these item-specific setup
costs. Add a new set of zero-one variables

yit =
{
1 if xit > 0

0 otherwise,

as well as constraints

xit �Ctyit i= 1 � � � N  t = 1 � � �  T  (26)

yit � Yt i= 1 � � � N  t = 1 � � �  T � (27)

The new objective function becomes

z∗ =min
{ T∑

t=1

[
KtYt +

N∑
i=1

citxit +hitIit +#ityit

]}
� (28)

The mechanisms of both the (SP) and the (EH) heuristics
are easily generalized, as well. Note that it is not necessary
to solve each interval problem to optimality; To acceler-
ate the procedure, one may terminate as soon as a solution
is found within a given precision (>%) of a lower bound.
While it is unknown how the bounds for the heuristics’
optimality gaps can be extended or how the heuristics can
be designed to be asymptotically optimal and polynomially
bounded, in practice we find that in particular the (EH)
heuristic generates close-to-optimal solutions in a modest
amount of time. To show this, we have conducted a numer-
ical study, coding our heuristics in C++ and running them
on a Sun 4000 work station with Solaris 7 and 2 GB
of RAM.
In designing our study, we have followed the design of

Maes and Van Wassenhove (1986, 1988), one of the most
comprehensive comparisons of known heuristics, except
that they confined themselves to instances with N = T = 12
items and periods, while we have systematically varied the
number of items between 10 and 25 and the number of
periods from 10 to 50. (Maes and Van Wassenhove restrict
themselves to the case where only item-specific setup costs
prevail, which remain constant across the complete plan-
ning horizon.) An additional difference is that, at the end of
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Table 1. JIS: Gaps and running times of the EH heuristic with N = 10, T = 15 (limit six hours per instance).

Density

Low Medium High

TBO period Low Medium High Low Medium High Low Medium High

Low-item TBO (%) 0�00 0�23 −1�10 0�73 0�80 0�31 0�29 0�79 0�06
Running time 30/18 75/19 —/126 452/30 56/23 60/29 6154/55 —/126 6370/98

Medium-item TBO (%) 0�72 1�73 1�52 0�37 0�32 0�20 0�79 0�04 0�49
Running time —/80 2551/54 —/110 252/34 —/126 —/117 —/145 —/150 —/167

High-item TBO (%) −1�33 0�96 0�01 0�17 0�89 −0�43 1�09 0�01 0�49
Running time —/119 —/98 —/52 —/238 —/210 —/232 —/448 —/170 —/170

the eighties, no solution method was capable of solving the
model to optimality, even for moderate-size problems with
N = T = 12. As a consequence, the quality of the proposed
heuristics was gauged by their gap with respect to the best
solution found after evaluation of (up to) 1,000 nodes in
a tailor-made branch-and-bound tree. Today, we can solve
these and many larger problems to optimality, enabling us
to gauge the actual optimality gaps.
Our base set of problems has N = 10 items and a hori-

zon of T = 15 periods. As in Maes and Van Wassenhove
(1988), all demands �dit� are independently generated from
a normal distribution with mean 100 and standard devi-
ation of 10. With constant capacity levels C, we con-
sider three levels for the “problem density,” defined as the
ratio

∑T
t=1 Ct/

∑T
t=1 Dt = TC/

∑T
t=1 Dt: low density where

the ratio equals 2, medium density where it equals 4/3,
and high density where it is 10/9. We set all variable
cost rates hit = cit = 1. For each item i = 1 � � � N , we
determine the fixed (item-specific) setup cost indirectly by
first choosing the EOQ-cycle time, “time between orders
(TBO)”=√

2#/hd =√
2#/100=√

#/50, and determining
the # value from this identity. The TBO-value is gener-
ated from a uniform distribution on the interval �13� when
considering low TBO-values, the interval �26�, when con-
sidering medium TBO-values, and �510� for the case of
high TBO-values. The joint setup cost is calculated in the
same way, i.e., from the identity TBO=√

2K/100N .
We start by evaluating the (EH) heuristic with respect

to its optimality gap and running time, compared to the

Table 2. JIS: Gaps and CPU seconds of four exact and two EH heuristic solutions (limit one hour
per instance) with N = 10, T = 15.

Density TBO Net Net w/cuts Plant Plant w/cuts EH w/net EH w/plant

Low Low ∗ (30) ∗ (244) ∗ (67) ∗ (131) 1.85% (16) 2�35% (28)
Low Medium ∗ 0�75% 1�03% 0�25% 1.15% (38) 1�42% (106)
Low High ∗ 1�35% 0�90% 0�02% 5.32% (53) 2�19% (145)

Medium Low 0�34% 0�64% ∗ 0�13% 1.17% (25) 1�16% (32)
Medium Medium 0�82% 1�03% 0�46% 0�48% 0.12% (67) ∗ (297)
Medium High 1�02% 0�67% 0�59% 0�14% 0.15% (136) ∗ (548)

High Low 0�11% 0�40% ∗ 0�34% 0.31% (51) 0�18% (98)
High Medium 0�78% 1�01% 0�62% 0�91% 0.20% (96) ∗ (288)
High High 0�91% 1�15% 1�08% 1�16% 0.04% (392) ∗ (947)

complete horizon method (CHM)—the solution obtained
by the standard CPLEX MIP-solver when applied to the
full problem. We consider all 27 combinations that arise
when combining the three problem densities, three prod-
uct TBO values, and three period TBO values. For each
of these 27 combinations, we have generated five distinct
problem instances. We report in Table 1 the average run-
ning times in CPU seconds when solving the problem with
CHM and with the (EH) heuristic, implemented with � = 5,
Tl = l, l = 1 � � �  J = T , and > = 1%. We also report the
optimality gap of the solution generated by this heuristic.
A hyphen indicates that (one or more) problem instances
could not be solved to optimality within six hours, in which
case the reported optimality gap refers to the best found
solution by CPLEX so far. (Some of the optimality gaps
are negative, implying that the (EH) heuristic terminates
with a better solution than CHM after six hours of running
time!) We note that all optimality gaps are below 1�75%.
Where comparable, theCPU times appear to be of the same

order of magnitude as those in state-of-the-art heuristics
such as Stadtler (2003), even though differences between
the problem instances and platforms make a precise com-
parison impossible.
Unless specified otherwise, when CHM is used, we

employ the plant location formulation. Confirming prior
experience with the JIS model, we have noticed that this
formulation usually, although not necessarily, results in
faster solutions. (In contrast, we use the network formu-
lation, unless specified otherwise, for progressive interval
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heuristics, as it typically runs faster for these heuristics.)
As a further benchmark for the (EH) heuristic, we have
verified whether exact solutions (via CPLEX 7.1) could be
significantly sped up if the problem formulation is strength-
ened by adding the cutting-plane constraints (see Barany
et al. 1984a, b)

∑
t∈S

xit �
∑
t∈S

( l∑
u=t

diu

)
yit + Iil

i= 1 � � � N and l= 1 � � � T ∀S ⊆ �1 � � �  l� (29)

to the network formulation (and the same constraints, with
xit replaced by

∑T
w=t xitw, for the plant location formula-

tion). More specifically, we have added the violated con-
straints in (29) after solving the LP relaxation of the
complete problem and before invoking the CPLEX MIP
solver. Table 2 revisits the nine categories (of five problem
instances each) in Table 1, in which the item and period
TBO are of the same type, i.e., in which they are both
low, medium, or high. Each of the last six columns reports
on one of six solution methods described below and exe-
cuted with a one-hour time limit. The first reported number
is the optimality gap with respect to the best among the
six solutions, with a ∗ denoting a 0% gap; where the CPU
time is less than one hour, we report this measure within
parentheses (in seconds). The six methods are: (1) CHM
using the network flow formulation by itself; (2) CHM
using the network flow formulation with the addition of
violated cuts; (3) CHM with the plant location formula-
tion by itself; (4) CHM using the plant location formulation
with the addition of the above violated cuts; (5) the (EH)
heuristic where each interval problem is solved with the
network flow formulation; and (6) the (EH) heuristic with
the plant location formulation. We conclude that the cuts
in (29) do not result in major improvements either in terms
of CPU time or in terms of the quality of the generated
solutions. (Frequently, both attributes deteriorate, in fact.)
In Table 3, we show that the (EH) heuristic, again

implemented with � = 5 and Tl = l, l = 1 � � �  J , can be
effectively used for significantly larger problem instances.
Varying N from 5 to 25 and T from 10 to 50, we report the
CPU running time in seconds. We specify the parameters
as above, confining ourselves to the case where the prob-
lem density is medium, as is the “item TBO” and “period
TBO” value. Three problem instances are generated for
every combination of N and T .

Table 3. JIS: Running times for the (EH)
heuristic.

Periods 10 25 50

5 item 7 42 124
10 item 29 184 524
15 item 416 2694 4310
20 item 1600 9372 16159
25 item 20335 66634 58264

Table 4. JIS: Gaps and CPU seconds for the CHM
(within 1% of LB), the (EH) heuristic, and the
(SP) heuristic with N = 10, T = 15.

TBO period Low Medium High

Low-item TBO 0�9%/3�9% 0�1%/7�0% 0�3%/8�6%
Running time 9/7/1 9/8/1 13/6/1

Medium-item TBO 1�3%/11�3% 0�8%/11�5% 0�5%/11�0%
Running time 262/19/1 390/19/1 208/18/1

High-item TBO 2�8%/33�8% 2�9%/25�9% 1�2%/19�7%
Running time 7854/23/1 5235/24/1 6750/26/1

As mentioned in §4, the (SP) heuristic is considerably
faster than the (EH) heuristic, but it generally generates
solutions with significantly larger optimality gaps. Table 4
illustrates this for a set of 27 problem instances, all with
N = 10 and T = 15 and parameters as specified in our
basic set. Focusing on the medium problem density case,
we consider all nine combinations of product TBO and
period TBO-values, generating three instances for each. We
report on the running times of CHM (terminated when a
solution is found within 1% of the best lower bound), the
(EH) heuristic, and the (SP) heuristic. We also report both
heuristics’ average optimality gaps. While the optimality
gap for the (EH) heuristic is never in excess of 3%, and on
average equals 1�2%, that of the (SP) heuristic may be as
high as 33% and is on average 14�7%.
In Table 5, we evaluate the optimality gaps for the JS

problem with period-dependent setup costs only. To this
end, we consider a set of 45 problems with N = 10 and
T = 30 periods; we again consider all nine combinations of
TBO and problem density values and generate five problem
instances for each for these combinations. We report the
CPU times of the CHM and the (EH) and the (SP) heuris-
tics, along with the optimality gaps associated with both
heuristics. Once again, the (EH) heuristic generates solu-
tions within 1% of optimality and does so within approxi-
mately 20 seconds of CPU time. The CHM often requires
several thousands of CPU seconds (i.e., many hours of CPU
time); its solution times depend greatly on the parameters
of the problem. The (SP) heuristic is an order of magnitude
faster than the (EH) heuristic, but may generate solutions
with optimality gaps as large as 15%. Clearly, the (EH)
heuristic can be employed for far larger problem instances.

Table 5. JS: Gaps and CPU seconds for CHM, the (EH)
heuristic, and the (SP) heuristic with N = 10,
T = 30.

Density Low Medium High

Low TBO 0�2%/6�0% 0�5%/1�6% 0�2%/0�5%
Running time 44/17/1 48/17/1 21/17/1

Medium TBO 0�8%/12�1% 0�1%/3�4% 0�1%/5�0%
Running time 742/29/3 712/19/1 85/19/1

High TBO 0�5%/15�0% 0�1%/3�9% 0%/6�0%
Running time 1150/22/2 3973/21/1 127/19/1
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Table 6. JIS: Gaps and CPU seconds for CHM and the
(EH) heuristic with item-dependent fixed costs
only (Kt = 0, N = 10, T = 15).

Density Low Medium High

Low-item TBO (%) 0�5 0�5 0�4
Running time 2/7 7/7 -/13

Medium-item TBO (%) 1�7 1�6 −1�1
Running time -/28 -/44 -/103

High-item TBO (%) 1�0 −0�7 −2�5
Running time -/41 -/126 -/358

Finally, we consider the case with item-dependent setup
costs only. Table 6 compares the (EH) heuristic and CHM
for the nine relevant item TBO and problem density values
in Table 1 (as in Table 2, the CHM is terminated after one
hour). All of our conclusions regarding the quality of the
(EH) heuristic solutions and the running times continue to
apply for this special case of the JIS model.
Returning to the general JIS model, Belvaux and Wolsey

(2000, 2001) observe that in many applications, at most one
or two items may be ordered per period. The authors refer
to such models as “small bucket models.” Once again, the
mechanics of the (SP) and (EH) heuristics are straightfor-
wardly adjusted to accommodate this restriction. For small
bucket models, even the branch-and-bound methods of §5
are easily adjusted. Choosing � = 8 logT �, as in (24),
this gives rise to a polynomial time implementation of the
heuristics for the JIS model, where the complexity bound
is a factor O�N� or O�N 2� larger than the corresponding
complexity bound for the JS model.
Similarly, the mechanics of the (SP) and (EH) heuristics

are easily adjusted to (i) add capacity limits for individual
items in each period; (ii) allow for multiple capacitated
order batches in every period, as in Anily and Tzur’s (2005,
2006) MIMV-problem; (iii) address the hierarchical plan-
ning problems in Graves (1982) or Van Roy and Wolsey
(1987), which differ from the JIS model with capacity lim-
its for each item only by allowing the (joint) capacity to
be increased with overtime at a linear penalty cost; or (iv)
handle any of the other variants mentioned in Belvaux and
Wolsey (2000, 2001).
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