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Abstract

This paper conducts a probabilistic analysis of an important class of heuristics for multi-

item capacitated lot sizing problems.

We characterize the asymptotic performance of so-called progressive interval heuristics

as T , the length of the planning horizon, goes to infinity, assuming the data are realiza-

tions of a stochastic process of the following type: the vector of cost parameters follows

an arbitrary process with bounded support, while the sequence of aggregate demand and

capacity pairs is generated as an independent sequence with a common general bivariate

distribution, which may be of unbounded support. We show that important subclasses of

the class of progressive interval heuristics can be designed to be asymptotically optimal

with probability one, while running with a complexity bound which grows linearly with the

number of items N and slightly faster than quadratically with T .

We generalize our results for the case where the items’ shelf life is uniformly bounded,

e.g. because of perishability considerations.
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1 Introduction

This paper conducts a probabilistic analysis of an important class of heuristics for multi-item

capacitated lot sizing problems. More specifically, we address the following classical problem

(P): a family of N items is to be procured from the same production facility or outside supplier.

The planning horizon consists of T periods (not necessarily of equal length). Demands are

specified for each item and each period of the planning horizon. The aggregate order size,

in any given period, is bounded by a capacity limit, which may vary over the course of the

planning horizon. The costs consist of inventory carrying, variable and fixed order costs. As

to the latter, the fixed order cost in any given period only depends on the period index, but

not on the composition of the order. The inventory and variable order costs are proportional

with the end-of-period inventories and order sizes, at item- and period-dependent cost rates.

The objective is to minimize total costs for the planning horizon while satisfying all demands,

without backlogging.

Despite a voluminous literature devoted to the general model (P), it continues to present

a major challenge to theoreticians and practitioners alike. The problem is NP complete, even

in the special case of a single item (N = 1), as shown by Florian et al (1980). Until recently,

exact and heuristic solution methods have only been successfully applied to instances with a

relatively low number of items and/or periods. Recently, Federgruen et al. (2002) investigated

the following class of so-called progressive interval heuristics. A progressive interval heuristic

consists of J iterations, where, iteration by iteration, the problem is solved, to optimality, over

a progressively larger time interval [1, T�], i.e. T1 ≤ T2 ≤ · · · ≤ TJ = T . When solving a

given interval problem, the necessary and sufficient conditions for a feasible extension to the

remainder of the planning horizon are appended as boundary conditions. To ensure that the

computational complexity in each iteration remains managable, the heuristic fixes, in iteration

�, all integer variables for periods 1 to T� − τ (for some τ > 0) and all continuous variables for

periods 1 to some t� ≤ T�−1 at their optimal value after iteration �−1. The horizons are chosen

such that 0 = t1 ≤ t2 ≤ · · · ≤ tJ while τ ≥ T� − T�−1, the number of periods by which the

horizon is expanded in the �-th iteration.

We characterize the asymptotic performance of the progressive interval heuristics as T goes

to infinity, assuming the data are realizations of a stochastic process of the following type:

the vector of cost parameters follows an arbitrary process with bounded support, while the

sequence of aggregate demand and capacity pairs is generated as an independent sequence
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with a common general bivariate distribution, which may be of unbounded support. We show

that important subclasses of the class of progressive interval heuristics can be designed to

be asymptotically optimal with probability one, while running with a complexity bound which

grows linearly with the number of items N and slightly faster than quadratically with T . Our

probabilistic analyses complement the worst case analyses in Federgruen et al. (2002) where

asymptotic optimalty is shown under conditions which require that all demands and capacities

are uniformly bounded and that the aggregate capacity over a large enough interval of time ex-

ceed the aggregate demand by at least a minimum slack value σ > 0. Both of these assumptions

are somewhat restrictive, in the context of an asymptotic analysis where very large planning

horizons T are considered.

For many types of complex (NP-complete) logistical planning problems, probabilistic analy-

ses have provided performance guarantees for various classes of heuristics, fostering insights

into which algorithmic approaches are effective for large size problems. One such planning area

is that of vehicle routing, starting with the seminal papers by Karp (1979) and Haimovich and

Rinnooy Kan (1985); see Coffman and Lueker (1996), Federgruen and Simchi-Levi (1992)

and Anily and Bramel (1999) for surveys. (Some of the planning models integrate vehicle rout-

ing with inventory planning but, thus far, only in a context of demand processes that occur

at constant rates.) Other logistical planning areas supported by probabilistic analyses include

(hierarchical) facility location and sourcing models (e.g. Chan and Simchi-Levi (1996), Gallego

and Simchi-Levi (1997), Fisher and Hochbaum (1980), and Romeijn and Romero Morales

(2001)). See Bramel and Simchi-Levi (1997) for a general overview. Rhee and Talagrand

(1987, 1989) and Rhee (1993) have shown how probabilistic analyses of a variety of logistical

planning problems can be based on specific large deviation results. Our analyses, as well, are

in part, based on such large deviation techniques. To our knowledge, the probabilistic analyses

in this paper represent the first such analyses for inventory planning models with time-varying

parameters (, otherwise referred to as dynamic lot sizing problems).

We conclude this §with a brief review of the relevant literature beyond the papers mentioned

above. The (NP-) complexity of the problem arises from the superpostition of (joint) setup costs

and capacity limits. Indeed, the problem is solvable in O(NT logT ) time, if either the capacity

constraints are relaxed or in the absense of fixed order costs. In the former case, the problem

decomposes into N independent single item lotsizing problems for which one of the O(T logT )

methods by Aggarwal and Park (1992), Federgruen and Tzur (1991) or Wagelmans et al.

(1992) can be used. In the latter case, the problem is solvable in O(NT logT ) time with Ahuja
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and Hochbaum (2004)’s recent method.

There is a voluminous literature describing various heuristics for the general multi-item

model. We refer to Salomon (1990) and Kuik et al. (1994) for surveys of the literature until

1994. State-of-the art solution methods include Belvaux and Wolsey (2000, 2001), Stadtler

(2003) and Suerie and Stadtler (2003). These methods are all based on variants of progres-

sive interval heuristics. See Federgruen et al. (2002) for details and a more detailed litera-

ture review. Other than the above mentioned worst case analyses in the latter paper, the only

performance guarantees for heuristics for capacitated lot-sizing problems with general time-

dependent capacity limits are due to Gavish and Johnson (1990) and van Hoesel and Wagel-

mans (2001). The latter developed a fully polynomial approximation scheme for the general

single-item model, after the former proposed such a scheme for a more restricted version of the

problem.

The remainder of this paper is organized as follows: In §2, we specify the model, the prob-

ability model generating its data and the class of progressive interval heuristics. In §3, we

establish almost sure asymptotic optimality for heuristics in this class as well as their polyno-

mial complexity bound. §4 concludes the paper with a discussion of the case where the items’

shelf life is uniformly bounded e.g. because items are perishable.

2 The model and the class of progressive interval heuristics

The model employs the following data, where the index i ∈ {1, . . . , N} is used to distinguish

between items and time periods are indexed by t. (Demands are represented as multiples of the

volume that consumes one unit of capacity):

cit = variable per unit order cost for item i in period t

hit = cost of carrying a unit of inventory of item i at the end of period t

Kt = setup cost incurred when an order is placed in period t

dit = demand for item i in period t; (dit ≥ 0)

Dt = aggregate demand in period t =∑Ni=1 dit

Ct = order capacity, i.e. the maximum number of units which can be ordered in period t.

We use the following set of decisions variables:

xit = order size for item i in period t; i = 1, . . . , N; t = 1, . . . , T
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Yt =

⎧⎪⎪⎨
⎪⎪⎩

1 if
∑N
i=1 xit > 0

0 otherwise
t = 1, . . . , T

Iit = ending inventory of item i in period t; i = 1, . . . , N; t = 1, . . . , T

Let I0t = the minimum aggregate inventory at the end of period t, such that a feasible pro-

duction / inventory plan exists for periods t + 1, . . . , T (t = 0,1, . . . , T ). These minimum stock

levels are easily computed from the following recursion, which can be verified by induction:

I0t =
(
Dt+1 − Ct+1 + I0t+1

)+
, t = 0,1, . . . , T − 1, with I0T = 0 (1)

This is the well known Lindley equation, see e.g. Asmussen (1987). The following is a

standard formulation:

(P) z∗ = min

⎧⎨
⎩
T∑
t=1

⎡
⎣KtYt +

N∑
i=1

(citxit + hitIit)
⎤
⎦
⎫⎬
⎭ (2)

s.t.

Iit = Ii(t+1) + xit − dit, i = 1, . . . , N, t = 0, . . . , T (3)
N∑
i=1

xit ≤ CtYt i = 1, . . . , N, t = 1, . . . , T (4)

N∑
i=1

Iit ≥ I0t t = 1, . . . , T (5)

Ii0 = 0;xit ≥ 0; Iit ≥ 0; Yt ∈ {0,1} (6)

We conclude, from (1) that:

Lemma 1 (P) has a feasible solution iff I00 = 0.

We assume that the model data are generated by the following probabilistic model: the

(2N + 1)T cost parameters {Kt, cit, hit} are generated by an arbitrary stochastic process with

support on a hypercube in the positive orthant of R(2N+1)T . As to the sequence of aggregate

demand and capacity pairs {(Dt, Ct) : t = 1, . . . , T}, we assume:

(A) {(Dt, Ct) : t = 1, . . . , T} is a sequence of independent pairs of random variables, all

distributed like (D,C) with a general bivariate distribution, possibly with unbounded support,

such that the marginal distribution of D has a moment generating function, i.e. E(eθD) exists

for some θ > 0, δ = E(D) > 0 and the support of the distribution of C is bounded from below

by a constant C∗. Moreover, µ = E(C)− E(D) > 0.

The requirement that the demand distribution has a moment generating function which
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is finite in the neighborhood of the origin covers most of the distributions commonly used

in (stochastic) inventory models. (e.g. the Normal, Gamma, Negative Binomial or Weibull dis-

tributions). The condition merely precludes heavy-tailed demand distributions which implies

heavy-tailed distributions for the steady-state distribution of the reserve-stock variables
{
I0t
}
.

The condition µ = E(C)−E(D) > 0 is necessary to ensure that the generated problem instances

be feasible as T becomes large. Let ψ(θ) denote the cumulative generating function (cgf) of the

random variable (D-C) which is the logarithm of its moment generating function:

ψ(θ) = logE
[
eθ(D−C)

]
.

Since D has a finite moment generating function on some interval [0, θ̄], so does (D − C), so

that ψ(θ) <∞ on [0, θ̄]. Moreover, ψ(·) is differentiable with ψ(0) = 0 and ψ′(0) = −µ < 0, by

(A), so that ψ(θ) < 0 for all θ > 0, sufficiently small.

When the items have a limited shelf life, we show in §4 that our results continue to apply

under generalizations of condition (A), allowing for various forms of intertemporal demand and

capacity dependences.

In a progressive interval heuristic, employing J iterations, the �-th iteration consists of solv-

ing (P), with T replaced by T� and all (integer) Y -variables for periods 1, . . . , T� − τ and all (con-

tinuous) x- and I-variables for periods 1, . . . , t� ≤ T�−1 fixed at their optimal value in the �−1st

iteration. (In the first iteration, no rstrictions apply to any of the variables.) Thus, the number

of unrestricted integer variables in each (except for possibly the first) iteration is kept constant

at τ . Since the complexity of any mixed integer program is primarily determined by the num-

ber of (unrestricted) integer variables, the computational complexity remains managable when

choosing τ sufficiently small, and from each iteration to the next it grows only moderately.

The heuristic starts with the recursive computation of the values
{
I0t
}
, via (1). If I00 > 0, no

feasible solution exists, in which case the optimality gap is defined to be zero, see Lemma 1.

As in Federgruen et al. (2002), we pay special attention to two extreme subclasses: (i)

the Strict Partitioning heuristics (SP), with all (except for possibly the last) interval increment

T� − T�−1 = τ and t� = T�−1 = T� − τ ; (ii) the Expanding Horizon heuristics (EH) with all t� = 0.

The (SP)-heuristics are related to the Time Partitioning heuristics, see Federgruen and Tzur

(1999).

Thus, the (SP)-heuristics minimize the computational complexity of each interval problem

at the expense of providing minimal flexibility to the continuous variables. The (EH)-heuristics,
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while of larger computational complexity, provide maximal flexibility for the continuous vari-

ables and even for the integer variables, in case interval increments T� − T�−1 < τ are chosen.

Under such choices, even many of the setup decisions made in one iteration, may be revis-

ited in subsequent iterations, on the basis of additional demand, cost and capacity information

pertaining to additional periods. The numerical study in Federgruen et al. indicates that (EH)-

heuristics can be used effectively to solve moderate to large size problem instances and that

the solutions generated come very close to being optimal. Those gererated by (SP)-heuristics

typically exhibit larger optimality gaps.

3 Almost sure asymptotic optimality

In this §, we show that both (SP)- and (EH)-heuristics can be designed to be simultaneously

almost surely asymptotically optimal as well as of low polynomial complexity. As with all (SP)-

heuristics, we confine ourselves to (EH)-heuristics in which (with the possible exception of the

last iteration) exactly τ periods are appended to the tail of the planning horizon, as we progress

from one iteration to the next (T�−T�−1 = τ). We show that both heuristics, with cost values zSP

and z(EH), respectively, are almost surely (a.s.) asymptotically optimal if the interval increment

τ is adjusted as a function of T , where

τ = Ω (logT) , i.e. lim
T→∞

τ
logT

= ∞, e.g. (7)

τ = = η ⌈logT
⌉ζ , for some η > 0 and ζ > 1

To derive a specific complexity bound, we assume that each interval problem in each iteration is

solved with a tailored branch-and-bound procedure, i.e. the b&b-procedure in §5 of Federgruen

et al. (2002) in which each non-leaf node of the tree is evaluated with lower bound LB3, ibid.

Theorem 1 Consider a (SP)-heuristic with τ = η ⌈logT
⌉ζ for some η > 0 and ζ > 1. The heuristic

is asymptotically optimal , a.s. and it can be designed to run in O(NTζ+1 log logT ) time as well.

Proof. Let c∗i > 0 denote the essential infimum of the stochastic process {cit : t = 1, . . . , T}.
Observe first that by the law of large numbers, with probability one, lim infT→∞ z∗

T

≥∑Ni=1 ci∗ lim infT→∞ 1
T
∑T
t=1 dit =

∑N
i=1 ci∗δi > 0, with δi = E(dit). (Note that δi > 0 for at least

one i = 1, . . . , N since
∑N
i=1 δi = δ > 0.) In other words, with probability one, the numerator in
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the optimality gap zSP−z∗
z∗ grows at least linearly in T . It thus suffices to show,

lim
T→∞

1
T

[
zSP − z∗

]
= 0, a.s. (8)

As in the worst-case analysis of Theorem 2 of Federgruen et al. (2002), we transform an

optimal solution for the complete problem in two phases into a solution which is achievable by

the (SP)-heuristic. (If no feasble solution exists, i.e. I00 > 0, the zero optimality gap is bounded

by that achieved for the transformed instance in which Ii0 = I00/N, i = 1, . . . , N.) In Phase

I, the optimal solution is transformed into one with all intervals’ ending aggregate inventories

equal to their I0-values. (Note that that the solution generated by the (SP)-heuristic satisfies this

property as well.) Let zI denote its cost value. In Phase II, the composition of the reserve stock

at the end of each of the intervals is made identical to that of the solution of the (SP)-heuristic,

resulting in a solution with the cost value zII . This solution is one which is among the ones

considered by the (SP)-heuristic, i.e. zII ≥ zSP . Thus,

zSP − z∗
T

≤ z
II − z∗
T

= z
II − zI
T

+ z
I − z∗
T

(9)

Following the proof of Theorem 2 in Federgruen et al. (2002) and given the (general) assump-

tion about the stochastic process which generates the cost parameters, ones verifies that an in-

teger Λ > 1 and constants B1 and B2 exist such that zI −z∗ ≤ (J−1)B1+B2
∑J−1
�=1

∑T�
r=T�−Λ+1 Cr .

If Λ > τ , the partial sums {∑T�r=T−Λ+1 Cr : � = 1, . . . , J − 1} may overlap. However, zI − z∗ ≤
(J − 1)B1 + B2�Λτ 	

∑T
r=T−(J−1)Λ+1 Cr is a valid upper bound. Thus,

zI−z∗
T ≤ (J−1)

T

[
B1 + B2�Λτ 	Λ 1

(J−1)Λ
∑T
r=T−(J−1)Λ+1 Cr

]
and limT→∞ zI−z∗

T − 0 a.s., since

limT→∞ J−1
T = limT→∞ τ−1 = 0 and since, with probability one,

limT→∞ 1
(J−1)Λ

∑T
r=T−(J−1)Λ+1 Cr = E(C1) < µ by the law of large numbers and the fact that the

sequence {Ct : t = 1,2, . . . } is an i.i.d. sequence of random variables.

To bound the additional cost incurred because of the Phase II transformation, let ∆c∗ =
maxt maxi
=�[cit − c�t], ∆h∗ = maxt maxi
=�[hit − h�t], h∗ = infi,t hit and K∗ = maxt Kt and

note that ∆c∗ = O(1), ∆h∗ = O(1) and K∗ = O(1) as T →∞ while h∗ > 0.

The solution obtained after Phase I and the solution generated by the (SP)-heuristic, both

have IT� = I0T� for all � = 1, . . . , J. In Phase II, we obtain the desired composition of the ending

inventory at the end of the J intervals by changing (only) the item identity of at most (all of

the) I0T� units in the ending inventory of the � − th interval, without any additional changes in

the order- and inventory plans. The transformed solution remains feasible, incurs no additional
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fixed order costs and adds at most
∑J−1
�=1 I

0
T�(∆c

∗ + L�∆h∗) in variable costs, where L� denotes

the shelf life of the oldest unit in the reserve stock at the end of period T�. Thus, to prove (8) it

suffices to show that

lim
T→∞

1
T

J−1∑
l=1

I0T�
(
∆c∗ + L�∆h∗

) = 0, a.s. (10)

Recall that {I0t } in (1), when traversed backwards, is a Lindley process. Since the pairs {(Dt, Ct)}
are i.i.d, and since µ > 0, {I0t } has a limiting distribution I0 (i.e. limt→∞ I0(T)

w= I0, where the

convergence is in distribution.) with E(I0) < ∞, see Asmussen (1987, §8.1). Moreover, in view

of the remaining assumption in (A), the distribution of I0 has an exponential tail, i.e. there exist

constants α and β > 0 such that Pr[I0 > x] ∼ αe−βx , x → ∞ (i.e. limx→∞ Pr[I0>x]
αe−βx = 1) (see

Assmussen (1987, §12.5). Thus, for some x0 > 0, Pr[I0 > x] ≤ 2αe−βx , for all x > x0. Finally,

let Ī(T) = maxt=1,... ,T I0t denote the largest minimum reserve stock required over the entire

planning horizon. Since I0 has the same distribution as [D − C + I0], and since 0 = I0T ≤st I0,

one easily verifies by complete induction that I0t ≤st I0 for all t = 1. . . . , T .

Let ñ(T) = √τ logT denote the geometric mean of τ and logT and note from (7) that

lim
T→∞

logT
ñ(T)

= 0 and lim
T→∞

ñ(T)
τ

= 0. (11)

We first show that

lim
T→∞

Pr
[
L� ≤ ñ(T) for all � = 1, . . . , J − 1

] = 1 (12)

i.e. asymptotically the maximum shelflife of any unit in the reserve stock at the end of any

of the intervals (in the Phase I solution) is almost surely bounded by ñ(T). Under (12) we have

almost surely that (8) holds since

0 ≤ lim
T→∞

1
T

I−1∑
�=1

I0T�(∆c
∗ + L�∆h∗)

≤ lim
T→∞

{
(∆c∗ + ñ(T)∆h∗)

T
(J − 1)

}
lim
T→∞

1
J − 1

J−1∑
l=0

I0T�

= h∗
(

lim
T→∞

ñ(T)
τ

)
E(I0) = 0, a.s.

where the first equality follows from the the fact that the {I0t }-process is ergodic, so that a long-

run average, sampled at equidistant epochs, converges with probability one to the expected
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value of the limiting distribution, while the second equality follows from (11).

It remains to prove (12). Note that Pr[L1 > ñ(T) or L2 > ñ(T) or . . . LJ−1 > ñ(T)] ≤∑J−1
l=1 Pr[L� > ñ(T)]. Choose 0 < θ < β such that ψ(θ) < 0. To bound each of the terms in

the sum, consider first the conditional probability Pr[L� > ñ(T)]|IT� = i0�], which is bounded

by Pr[
∑T�
r=T�−n(T)+1(Cr −Dr) ≤ i0�|IT� = i0�] with n(T) = ñ(T)− ∆c∗+K∗

h∗ .

(If a unit, in stock at the end of period T�, has a shelf life larger than ñ(T), this implies that a

full capacity order is placed is in each of the periods in the interval [T�−n(T)+1, . . . ..., T�], for

otherwise the procurement of this unit could be postponed till some period in this interval with

slack capacity, saving at least ñ(T)−n(T) periods’ carrying costs, i.e. at least (∆c∗+K∗), more

than offsetting any additional order costs. However, given the condition It� = i0�, this situation

can only happen if
∑T�
r=T�−n(T)+1(Cr −Dr) ≤ i0�.) Thus,

Pr[L� > ñ(T)|i0�] ≤ Pr[
T�∑

r=T�−n(T)+1

(Cr −Dr) ≤ i0�|IT� = i0�]

= Pr[
T�∑

r=T�−n(T)+1

(Dr − Cr) ≥ −i0�|IT� = i0�]

= Pr[
n(T)∑
l=1

(Dr − Cr) ≥ −i0�] (13)

≤ exp{−n(T)(−θi
0
�

n(T)
−ψ(θ))}

where the second equality follows from the fact that I0T� only depends on the demand and

capacity values in periods T� + 1, . . . , T , see (1), so that the conditional distributions of {(Dr −
Cr |I0T�) : r = T� − n(T) + 1, . . . , T�} coincide with the unconditional distributions {Dr − Cr :

r = T� − n(T) + 1, . . . , T�} and hence those of {D1, . . . ,Dn(T)} by the i.i.d. assumption of

{(Dt, Ct)}∞t=1. The last inequality in (13) follows from Chernoff’s inequality. We thus obtain the

following bound on the unconditional probability

Pr[L� > ñ(T)] ≤ EI0T�

{
exp(−n(T)ψ(θ)) exp(θĪT�)

}
(14)

≤ exp(−n(T)ψ(θ))EĪr exp(θĪT )

Note that
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E exp
{
θĪ(T)

} = −
∫∞

0
eθxd[1− Pr(Ī(T) ≤ x)] = 1+

∫∞
0
θeθxPr[Ī(T) > x]dx

= 1+
∫∞

0
θeθxPr[I01 > x or I02 > x or . . . I0T > x]dx ≤ 1+

T∑
t=1

∫∞
0
θeθxPr[I0t > x]dx

≤ 1+
T∑
t=1

∫∞
0
θeθxPr[I0 > x]dx = 1+ T

∫∞
0
θeθxPr[I0 > x]dx (15)

≤ 1+ T
[∫ x0

0
θeθxPr[I0 > x]dx +

∫∞
x0
θeθx2αe−βxdx

]

≤ 1+ T
[∫ x0

0
θeθxdx + 2αθ

(β− θ)e
e(θ−β)x0

]
= 1+ Tb

with b = eθx0 − 1+ 2αθ
(β−θ)e

(θ−β)x0
, where the second inequality follows from I0t ≤st I0, for all

t. Thus, with a = −ψ(θ) > 0:

0 ≤ lim
T→∞

Pr[L1 > ñ(T) or L2 > ñ(T) or . . . LI−1 > ñ(T)]

≤ lim
T→∞

J−1∑
l=1

Pr[L� > ñ(T)]

≤ lim
T→∞

{(J − 1) exp{−an(T)}(1+ Tb)

= b lim
T→∞

{T
2

τ
exp(− logT

an(T)
logT

)}

= b lim
T→∞

T 2

τ
1

T
an(T)
logT

= 0

where the last inequality follows from (14) and (15) and the last equality from (11). This

proves (12), hence (10) and (8).

It remains to he shown that when τ = η�(logT)ζ	, with ζ > 1, the progressive interval

heuristic runs in O(NT 1+ζ logT ) time, when each interval problem is solved with the above

described b&b method. The discussion in §5 of Federgruen et al. (2002) shows that evaluation

of any node of a b&b tree requires O(Nτ logτ) time. Since this needs to be done at most 2τ

times to evaluate the complete tree, and since τ = O(Tζ ) interval problems need to be solved, the

complexity bound follows immediately.

The same simulaneous (almost sure) asymptotic optimality and polynomial complexity can

be obtained for the above (EH)-heuristic, under the same choice for the interval increment τ as

in (11). The complexity of this (EH)-heuristic is O(T log logT/(logT)ζ−1) larger than that of the

(SP)-heuristic. Nevertheless, complexity grows only linearly with N and (only) slighly faster than

cubically with T:

10



Theorem 2 Consider an (EH)-heuristic with τ = η�(logT)ζ	 for some η > 0 and ζ > 1. The

heuristic is asymptotically optimal a.s. and can be designed to run in O(NT 2+ζ/(logT)ζ−1) time.

Proof: The proof is analogous to that of Theorem 1, with only the following modifications:

The Phase II transformation should modify the composition of the reserve stock at the end of

periods T1, T2, . . . , TJ=1 to that prevailing at the end of the �-th iteration of the (EH)-heuristic.

(In the case of the (EH)-heuristic, this composition may change in subsequent iterations). As

shown in Theorem 2 (b) of Federgruen et al. (2002), a third Phase transformation is necessary

to obtain a solution which is is among the ones considered by the (EH)-heuristic, but this third

transformation only reduces the cost value. The derivation of the complexity bound is again

analogous, except that the evaluation of a single node in one of the b&b trees now requires

O(NT logT ) time.

4 Products with limited shelf life

Thus far, we have assumed that items can be kept in stock for un umlimited amount of time.

In this §, we address the situation where the shelf life of each item is bounded by an (integer)

constant λ, perhaps because the items are perishable. We refer to the survey paper by Nahmias

(1982) for a review of inventory models with limited shelf lives. Within the context of dynamic

lot sizing models, the complication of a fixed shelf life has not been addressed until Hsu (2000)

who showed that the single item uncapacitated model can be solved in O(T 2) time. (For this

case, Hsu addresses, in addition, more general life time models and more general order and

inventory cost functions then those used in (P).)

We show that, in the presence of a limited shelf life, almost sure asymptotic optimality of

(SP)- and (EH)-heuristics can be established under conditions even more general than (A), for

example:

(Af ) The sequence {(Dt, Ct)} is strongly ergodic, i.e. for any Lipschitz continuous function

g : R→ R, there exists a constant G such that

lim
t→∞

T∑
t=1

g((Dt, Ct); (Dt+1, Ct+1); (Dt+Λ, Ct+Λ)) = G a.s. (16)

Moreover, 0 < µ
def= limT→∞ 1

T
∑T
t=1 Ct − limT→∞ 1

T
∑T
t=1Dt (a.s.).

11



The condition is related to that of asymptotic mean stationarity, see e.g. Gray (1990). Beyond

the case of i.i.d. aggregate capacity and demand pairs considered under (A), (Af ) encompasses

a large variety of processes, for example:

(I) {(Dt, Ct)} is stationary and ergodic

(II) {(Dt, Ct)} is a so-called ”world driven” process. Here, the distribution of (Dt, Ct) is time

invariant but it depends on the state of the world Wt , with {Wt} a Markov process with a

finite or countable state space which is ergodic (i.e., the Markov chain has a single positive

recurrent set of states). Thus the conditional distributions {(Dt, Ct)|Wt = w} are time-

invariant. Moreover, limt→∞Wt
w= W and limt→∞(Dt, Ct)

w= ((D,C)|W). See Zipkin (2000)

for a detailed discussion of the use of world driven demand processes in inventory models.

(III) A third type of process satisfying (Af ) and modeling different types of intertemporal

correlations, is where the process {(Dt, Ct)} is autoregressive, e.g. a stable ARMA(p,q)

process, i.e.

Dt =
p∑
i=1

ϕiDt−i +
q∑
j=1

ψjεt−j + εt ∀t (17)

Ct =
p∑
i=1

ϕ̂iCt−i +
q∑
j=1

ψ̂jε̂t−j + ε̂t ∀t (18)

where {εt}+∞t=−∞ and {ε̂t}+∞t=−∞ are independent sequences of i.i.d. random variables with

finite second moments. A sufficient condition for the processes to be stable is that the

characteristic polynomials Φ(z) = ∑p
i=1ϕiz

i [Φ̂(z) = ∑p
i=1 ϕ̂iz

i] and Ψ(z) = ∑q
i=1ψiz

i

[Ψ̂(z) =∑qi=1 ψ̂iz
i] do not have common (complex) roots and that the roots of the former

are outside the unit circle.

Lemma 2 Assume the process {(Dt, Ct)} is of type (I)–(III). Then {(Dt, Ct)} is strongly ergodic.

Proof: (I) Immediate, see e.g. Proposition 6.31 in Breiman (1992).

(II) The process {(Wt,Wt+1, . . . ,Wt+λ)} is a Markov process, whose Markov chain has a single

positive recurrent set of states, i.e. there exists a state of the process with a finite expected

recurrence time. Almost sure convergence of the limit to the left of (16) then follows from

the renewal reward theorem.

(III) It suffices to prove strong ergodity of {Dt} and {Ct} separately. We prove the former;

the proof of the latter is identical. Since the ARMA process is stable, there exists a con-
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stant 0 < a < 1 such that Dt =
∑t
j=0αjεt−j , with |αj| < aj , see e.g. Samorodnit-

sky and Taqqu (1994). The sequence {Dt} is non-stationary. Let D0
t
def= ∑∞

j=0αjεt−j .{
D0
t

}
is clearly stationary and it is well known to be ergodic. Fix a function g : Rλ → R

that is Lipschitz continuous. By the argument for (I), there exists a constant G such that

limT→∞ 1
T
∑T
t=1 g(D

0
t ,D

0
t+1, . . . ,D

0
t+λ) = G a.s.. To show that

limT→∞ 1
T
∑T
t=1 g(Dt,Dt+1, . . . ,Dt+Λ) = G a.s., as well, it suffices to show that for any δ > 0,

| lim
T→∞

1
T

T∑
t=1

[g(Dt,Dt+1, . . . ,Dt+λ)− g(D0
t , . . . ,D

0
t+λ)]| < δ a.s. (19)

Since for any integer n ≥ 1,

| lim
T→∞

1
T

T∑
t=n
[g(Dt,Dt+1, . . . ,Dt+Λ)− g(D0

t ,D
0
t+1, . . . ,D

0
t+Λ)]|

≤ lim
T→∞

1
T

T∑
t=n

|g(Dt,Dt+1, . . . ,Dt+Λ)− g(D0
t ,D

0
t+1, . . . ,D

0
t+Λ)|

it follows from the Lipschitz continuity of g(·) that it suffices to show, for any δ > 0, that

an integer n ≥ 1 exists such that

limT→∞ 1
T
∑T
t=n |Dt−D0

t | ≤ limT→∞ 1
T
∑T
t=n

∑∞
j=t+1 |αj||εt−j| ≤ limT→∞ 1

T
∑T
t=n

∑∞
j=t+1 aj|εt−j|

= limT→∞ 1
T
∑T
t=n at+1∑∞

j=0 aj|ε−j−1| ≤ limT→∞
∑T
t=n at+1{limr↑1

∑∞
j=0 rj|ε−j−1|}

= limT→∞ 1
T
∑T
t=n at+1{limM→∞ 1

M+1

∑M
j=0 |ε−j−1|} ≤ an+1E|ε| < δ a.s.

where the equality follows from the Abel-Tauberian theorem and the next to last inequality

from the law of large numbers. (Since the random variable ε has a finite second moment,

E |ε| <∞.) The last inequality is satisfied for all n ≥ �log(ρ/E|ε|)/ loga�.

To pursue the algorithm’s performance analysis, note that I0t , the minimum reserve stock

at the end of period t is now given by:

I0,ft = max
t+1≤s≤t+λ

s∑
r=t+1

(Dr − Cr) (20)

instead of (1). (Using repeated substitutions in (1), note that I0,ft = I0t when λ = ∞) In other

words, assuming that a feasable solution exists, to ensure that a solution for the first

t periods [1, . . . , t] can be extended into a feasible solution over the complete horizon

[1, . . . , T ], it is necessary and sufficient that It ≥ I0,ft . (If It < I
0,f
t , aggregate demand in

the periods t+1, . . . , s (for some t+1 ≤ s ≤ t+λ) exceeds (
∑s
r=t+1 Cr + It), so demand in
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[t + 1, s] can not be satisfied even when placing a full capacity order in each of the periods

of this interval. At the same time, if It ≥ I0,ft , the first period whose demand can not be

met, has a period index greater than t+λ and any additional inventory at the end of period

t is of no use to meet this demand.)

Theorem 3 Assume items have a fixed shelf life time λ > 0 and (Af ) holds.

(a) Consider an (SP)-heuristic with τ = η�logT	 for some η > 0. The heuristic is asymptoti-

cally optimal, a.s., and it can be designed to run in O(N2T 2 logT(logN + log logT)2) time

as well.

(b) Consider an (EH)-heuristic with τ = η�logT	 for some η > 0. The heuristics is asymptot-

ically optimal, a.s., and it can be designed to run in O(N2T 4(logN + logT + log2N/ logT))

time as well.

Proof: The proof is analogous to that of Theorem 1 and 2 and is, in fact, simpler.

limT→∞ zI−z∗
T = 0 a.s., is verified as in the proof of Theorem 1. Moreover, it was shown

there that for limT→∞ zII−zI
T = 0 a.s., it is sufficient to verify that (10) holds. Since L� ≤

λ, (10) reduces to showing that limT→∞ 1
T
∑T
t=1 I

0,f
t converges to a constant a.s.. This,

however, follows from (Af ), since, by (16), I0,ft is a Lipschitz continuous function of

{(Dt+1, Ct+1), (Dt+2, Ct+2), . . . , (Dt+λ, Ct+λ)}.

We now verify the complexity bounds. Under a fixed life time, the minimum cost network

flow problem to be solved in each node of the b&b-trees, associated with the different

interval instances, now needs to be solved by a standard method, rather than the Ahuja

and Hochbaum (2004) method. The best strongly polynomial time algorithm to solve

minimum cost network flow problems is due to Orlin (1989). The network flow model

has a source, a sink and two sets of nodes; the first set has a node for every period and the

second one has a node for every period / item combination. Thus, the model has O(Nτ)

nodes and O(Nτ) arcs in the (SP)-heuristic and O(NT ) nodes and arcs in the (EH)-heuristic.

Orlin’s method solves the problem therefore in O(N2τ2 log2Nτ) and O(N2T 2 log2NT ),

respectively. Since J = T/τ interval instances are solved and since in each, in the worst

case, all 2τ nodes of the b&b tree need to be evaluated, the complexity bounds follow

readily.
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