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One of the latest developments in network revenue management (RM) is the incorporation of customer
purchase behavior via discrete choice models. Many authors presented control policies for the booking process
that are expressed in terms of which combination of products to offer at a given point in time and given
resource inventories. However, in many implemented RM systems—most notably in the hotel industry—bid
price control is being used, and this entails the problem that the recommended combination of products as
identified by these policies might not be representable through bid price control. If demand were independent
from available product alternatives, an optimal choice of bid prices is to use the marginal value of capacity
for each resource in the network. But under dependent demand, this is not necessarily the case. In fact, it
seems that these bid prices are typically not restrictive enough and result in buy-down effects.

We propose (1) a simple and fast heuristic that iteratively improves on an initial guess for the bid price
vector; this first guess could be, for example, dynamic estimates of the marginal value of capacity. Moreover,
(2) we demonstrate that using these dynamic marginal capacity values directly as bid prices can lead to
significant revenue loss as compared to using our heuristic to improve them. Finally, (3) we investigate
numerically how much revenue performance is lost due to the confinement to product combinations that can
be represented by a bid price.

The heuristic is not restricted to a particular choice model and can be combined with any method that
provides us with estimates of the marginal values of capacity. In our numerical experiments, we test the
heuristic on some popular networks examples taken from peer literature. We use a multinomial logit choice
model which allows customers from different segments to have products in common that they consider to
purchase. In most problem instances, our heuristic policy results in significant revenue gains over some

currently available alternatives at low computational cost.
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1. Introduction
Network revenue management (RM) is concerned with managing demand for products that require
capacity on one or several resources (e.g. a seat on each flight leg of a specific itinerary), with

the objective to maximize revenue. A particular form of such demand management decisions is to
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control product availability over time. This sort of problem appears in the hotel, railway, car rental,
tour operator business, but the air travel is perhaps the most well-known source for such problems
and therefore we will stick to the terminology or the airline application. A product in this setting
is composed of seats on one or more flight legs, potentially some fare rules and an associated fare.
The firm faces stochastic demand and capacity of the resources is limited. In the context of this
paper, we treat capacities as fixed, in particular, we do not consider overbooking.

The incorporation of choice behavior into network RM has increasingly gained attention in recent
years as the means of segmentation erode in many markets. Traditional models for revenue man-
agement have worked under what is known as independent demand assumption. This assumption
postulates that every customer is interested only in a single product and makes a purchase or no-
purchase decision independent of other offers available by the firm or competitors. This assumption
is reasonable if products are perfectly fenced, but with the severe cuts of fare restrictions that
traditional airlines made in response to low-cost competition, it cannot be upheld in many markets.
We still assume that customers’ purchase behavior is myopic so that demand at any point in time
does not depend on previous or anticipated future demand.

The problem can be formulated as a dynamic program, unfortunately one with a computation-
ally intractable state-space even for networks of moderate size. Therefore, significant research has
been devoted to approximating the value function to obtain heuristic policies. Many of this recent
work proposes policies under the assumption that any combination of products can in principle
be made available. However, in practice, this is not the case as some product combinations might
not be representable via the two dominant methodologies, i.e., virtual nesting controls and bid
prices. Adoption of one or the other method seems to be driven by corporate history rather than
an informed choice, but it is noteworthy that in both cases bid prices have to be computed. For
a detailed discussion see Chaneton and Vulcano (2009). These authors have recently proposed a
stochastic gradient method based on simulated sample paths. The authors show that their algo-
rithm converges under mild assumptions to a stationary point and improves previous methods to
calculate bid prices.

In this paper, we present a simple, yet effective, way to improve bid prices that can be based on
any choice-based network RM method that provides estimates of the marginal value of capacity,
irrespective of the choice model (as long as it is reasonably fast to calculate purchase probabilities).
The basic idea is to start with some initial bid price (based, e.g., on estimated marginal capacity
values), and then to raise bid prices in a greedy fashion to exclude products that have a negative
impact on overall profits because of buy-down effects. Numerical experiments confirm that this

new method performs very well when compared with other available approaches.
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2. Literature Review

Network Revenue Management (RM) are computationally intensive even without consideration of
customer choice behavior, thus research has primarily concentrated on finding good heuristics. A
comprehensive description of both scientific and applied RM can be found in the book of Talluri
and van Ryzin (2004b), and the reader interested in a general overview of research over the last
decades shall be referred to the reviews McGill and van Ryzin (1999) and Chiang et al. (2007). We
focus in the following on papers closer related our approach.

Independent demand is a valid assumption in the case that customer segments are well fenced
off, and recent work includes for example Adelman (2007) and Topaloglu (2009). Adelman (2007)
proposes a time-dependent approximation and shows that upper bounds on the optimal objective
value are tightened relative to the standard so-called deterministic linear programming (DLP)
approach, and that the obtained policies perform better in a simulation study. Similarly, Topaloglu
(2009) improves on the DLP by using Lagrangian relaxation to obtain a time- and inventory-level-
dependent approximation. Farias and Van Roy (2007) introduce a linear programming approach
to approximate dynamic programming that depends on both time and inventory level. The same
approximation was independently proposed by Talluri (2008) who focuses on the relationships of
upper bounds on the optimal objective value of the aforementioned approaches by Topaloglu and
Adelman, respectively, as well as the DLP and a randomized linear programming model.

The earliest contributions to single leg RM with choice behavior include Brumelle et al. (1990)
and Belobaba and Weatherford (1996), amongst others, and for networks the passenger origin
and destination simulator studies by Belobaba and Hopperstad (1999). Zhang and Cooper (2005)
consider an inventory control problem of a set of parallel flights including a customer choice model
yielding a stochastic optimization problem which is being solved by simulation-based methods.
Another simulation-based approach is given by van Ryzin and Vulcano (2008), who compute virtual
nesting controls by constructing a stochastic steepest ascent algorithm designed to find stationary
points of the expected revenue function.

The incorporation of choice behavior into network RM has increasingly gained attention as the
means of segmentation erode in many markets by the arrival of competitors employing a low-cost
strategy. In this situation, the inclusion of choice behavior becomes a crucial element for any RM
system. Among the first approaches with a general model of customer choice is Talluri and van
Ryzin (2004a) for a single flight leg problem. Among the techniques that have been proposed for the
network context is the so-called choice-based linear program (CDLP) of Gallego and Phillips (2004).

Based on this work, Liu and van Ryzin (2008) present an extension of the standard deterministic



4 Meissner and Strauss: Improved Bid Prices for Choice-Based Network Revenue Management

linear program approach to include choice behavior, albeit with customer segments that do not
consider the same products. The result is an indication of the number of time periods out the
finite time horizon that an offer set should be available. A dynamic programming decomposition
approach is taken to obtain policies from the static solution of the CDLP and applied to the
multinomial logit (MNL) choice model with disjoint consideration sets. Furthermore, the solution
to the CDLP constitutes an upper bound on the optimal expected revenue. The notion of efficient
sets introduced by Talluri and van Ryzin (2004a) for the single leg case is translated into the
network context and these authors show that CDLP only uses efficient sets in its optimal solution.
Unfortunately, for the network problem the optimal policy does not necessarily only use efficient
sets like the single leg case, but Liu and van Ryzin (2008) can show asymptotic optimality of
the CDLP which indicates that using efficient sets only might be a good choice. Kunnumkal and
Topaloglu (2010) propose an alternative deterministic linear programming approach (ADLP) with
very similar structure like the CDLP, but they try to address its shortcoming by calculating time
dependent bid prices in contrast to the static ones produced by the CDLP. Although neither CDLP
nor ADLP can be proven to be theoretically superior, numerical experiments indicate ADLP results
in tighter upper bounds on the optimal expected revenue and better policies as well. Kunnumkal
and Topaloglu (2010) also apply their model to the MNL choice model with disjoint consideration
sets. Similar results like for the CDLP are presented, including asymptotic optimality, the fact that
ADLP provides an upper bound on the objective value and a dynamic programming decomposition
approach. The extension though comes at the cost of having significantly more constraints in
the arising linear program. A generalization of the CDLP that can also handle the MNL choice
model with overlapping consideration sets is presented in Miranda Bront et al. (2009), who employ
column generation to solve the arising large linear program. Meissner and Strauss (2009) extend
the approach of Adelman (2007) to include bid prices that depend on the remaining inventory
level as well as time. Zhang and Cooper (2009) develop a pricing model for substitutable flights
where customers choose among the available flights. This work differs from Zhang and Cooper
(2005) in that they use pricing instead of availability control, they assume at most one customer
arrival per time period as opposed to the previous block demand assumption, and does not assume
a pre-determined order of arrivals. Talluri (2010) proposes a generalization of the randomized
linear programming method that was developed in Talluri and van Ryzin (1999) to a customer
choice framework. The resulting concave program can be solved as a series of linear programs

with dynamic generation of cuts. Another mathematical programming approach to network RM is
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presented by Chen and de Mello (2010), where customer choice is formulated through the concept
of preference orders.

Bid Prices in network revenue management have been discussed in Talluri and van Ryzin (1998)
who show that the resulting control is not necessarily optimal. Prior simulations based methods
include Topaloglu (2008) which builds on van Ryzin and Vulcano (2008), however these papers
focus on optimizing virtual nesting rather than bid prices. The work of Chaneton and Vulcano
(2009) is closest to ours in that they also focus on the optimization of bid prices under customer
choice. They propose a stochastic gradient method to optimize bid prices based on simulated
sample paths and show that the resulting algorithm converges under mild conditions.

We propose a greedy heuristic that iteratively improves on an initial bid price. The latter could
be based on the estimate of the marginal value of capacity derived by any of aforementioned math-
ematical programming or decomposition approaches, for example. In our numerical experiments
we use the dynamic programming decomposition of Miranda Bront et al. (2009) to obtain initial

bid prices under the MNL choice model.

3. Problem Formulation

We face a network with m resources—flights legs in the airline application—and n products. A
product j is a seat on one or several flight legs and has a fixed fare f; and potentially some fare
rules associated with it. The set of all products is denoted by N = {1,...,n}. Which resources
a product requires is defined in a matrix A € {0,1}"™" whose component a;; represents whether
product j requires resource i, so we assume that there are no group requests. We write A; for the
jth column of A and A’ for its ith row. The notation i € A; (j € A?) represents resources ¢ that are
used by product j (products j that use resource 7).

Customers arrive continuously over time while decisions on which products to offer are made at
discrete points in time such that the time intervals are small enough to have a negligible probability
that two or more arrivals occur. A customer arrives in time periods ¢ with probability A. For the
sake of simplicity, we assume that X is constant over all time periods. However, the extension to the
time-heterogeneous case is not difficult. The decision time periods are indexed with t starting at
time ¢ = 1 until the end of the booking horizon ¢t = 7. All flights depart at time ¢ =74 1. The index ¢
can also refer to the time interval between decisions at ¢ and ¢+ 1 and will be clear from the context.
Given that we offer a set S C N of products at time ¢, a customer purchases product j € S with
probability P;(S) and does not purchase with probability Py(S). The choice option j =0 stands

for the non-purchase alternative and can be used to reflect the attractiveness of competition. The
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choice probabilities are derived by some choice model such that »._¢ P;(S)+ Py(S) =1 and do not

jes
depend on time (the same comments as for A apply concerning time-dependence). All customers
show up and do not cancel so that no overbooking is required.

Each resource ¢ initially has a capacity c; available, and the state vector z € N indicates how
much inventory is still available. Although z is clearly time-dependent, we do not use a subscript ¢
because it will be clear from the context. The remaining inventory also affects which products can
be offered; since we exclude overbooking, we require that sufficient inventory must be available to
provide a product. The set of all feasible products is then N(z)={j e N:A; <zx}.

Let us denote the optimal expected revenue obtainable from time ¢ until the end of the booking
horizon given remaining capacity x by v;(x), usually referred to as the value function. A common
assumption in recent work on this kind of network RM problem is that we can offer any combination

of products at any time; subject to sufficient remaining inventory. Under this assumption, v;(z)

can be written as follows:

SCN(x)

v(z) = max {Z)\P [fj+vt+1(x A)] [1—)\+)\P0(S)}’Ut+1($)}

= max {Z)\P [ — (Vi1 (@) — v (z — Aj))} } + v (), Vt, . (1)

SCN(x)

The boundary conditions are given by v,,(x) =0 for all inventory states x. Note that the expres-
sion (le () — vy (x— Aj)) represents the opportunity cost of selling product j. If we have a good
approximation of v;(z) for all time periods ¢ and all inventory state vectors z, then we can use this
as an approximation of the opportunity cost. Various approximations have been proposed, see e.g.
Miranda Bront et al. (2009), Liu and van Ryzin (2008), Meissner and Strauss (2009), or Zhang
and Adelman (2009). They all construct a policy of the following kind:

S* =arg max{z AP;( [fj — (approx. opportunity cost(t, a:,j))} } (2)

SCN(x) jes

In words, the policy recommends to offer the product set S* at time period ¢ when we have
inventory x still available in the network.

Problem (2) assumes that we are able to offer any combination of products for which we have
sufficient inventory left, thus the maximization is over S C N(x). However, this is not necessarily
true if we are forced to use bid price control (e.g. owing to the restrictions imposed by global
distribution systems). In this case, we need to set a bid price b;(¢,z) € R at each time ¢ for each

resource ¢ given remaining capacity x, which is subsequently used in a so-called bid price control:
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Definition 1 (Talluri and van Ryzin (2004b))A control u(t,z, f) is a bid-price control if
there exist real-valued functions b(t,z) = [by(t,z),...,b,(t,x)], t =1,2,...,7, (called bid prices),

such that
1 iffj>ZiEAj bi(t,f),AJ‘SIE,
0 otherwise.

Uj (tvxvfj) = { (3)

The control uw maps into a binary m-vector that represents which products shall be offered.

Two central issues arise: Firstly, we need a way to compute bid prices dynamically. If demand were
independent from the firm’s control, then an optimal choice of bid prices (though not necessarily
the optimal policy) would be to use the marginal value of capacity d(t, x,¢) for each resource i since
this ensures that each product with positive contribution f; =3, 4, 0(t,z,i) will be offered, where
we approximated the opportunity cost with the sum of marginal capacity values. However, if the
customers’ choices do depend on the firm’s control, it might be better to close some products—even
though they might have a positive contribution—if this influences other purchase probabilities so as
to improve the overall objective. Closing such a product could induce buy-up effects. We emphasize
that bid prices b and marginal values of capacity d are not necessarily the same thing: the latter
can be estimated by various methods and represents an estimate of the value of an additional unit
of capacity for a resource, whereas bid prices are used only as a “product availability control”
mechanism, and may differ significantly from 9.

Secondly, if we are required to use a bid price control due to technical or other reasons, the
formulation of the dynamic program (1) is incorrect in as far as some sets S C N(x) might not be
feasible under bid price control. Intuitively, the value function v;(z) in (1) therefore overestimates
the “true” value function that we would obtain when accounting for bid price control because we
are only able to offer combinations of products that can be represented by a bid price.

In the following, we elaborate on these two research questions. Our numerical experiments are
based on the example of the Choice-based Deterministic Linear Program (CDLP) with dynamic
programming decomposition as described in Miranda Bront et al. (2009)—we refer the interested
reader to the appendix for details concerning CDLP. We keep the discussion general since our
bid price policy below can be combined with other existing methods as well. Essentially, we only
require a good estimate of the marginal value of capacity of each resource, and the ability to quickly

evaluate choice probabilities under given bid prices.

4. Heuristic Bid Price Improvement
Let us begin with the problem of improving bid prices dynamically. We assume we used some

solution approach to solve the dynamic program (1) approximately so that we have estimates of
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the marginal values of capacity (¢, z,4). This assumption is justified by the availability of many
methods that provide such estimates and that are working well in industry practice; for exam-
ple, dynamic programming decomposition including customer choice is used by the optimizer of
Lufthansa Systems as reported in Kemmer et al. (2010). These estimates we can use to approx-
imate opportunity cost and to obtain a policy of the form (2). We seek to develop a heuristic
that attempts to maximize the objective ¢(b) over bid price vectors b € R™; note that any bid
price vector can be mapped into a corresponding offer set of products S(b) using Definition 1. The
objective function is given by

$(b):= Y AP{(S(®)(f; — Y 8(t,,1)), (4)

jes(b) i€A;

for given time period ¢ and remaining inventory x.

The underlying idea of the heuristic is to start with the estimate of the marginal values of
capacity as bid price vector and then to iteratively improve it in a greedy fashion. This initial
choice is motivated by the fact that this bid price vector offers exactly all products with positive
displacement-adjusted revenues f; —> . 4, d(t,x,1). If we use the Multinomial Logit (MNL) choice
model with non-negative purchase preference values to define the choice probabilities P; (for an
introduction to the MNL model see appendix), it is easy to see that adding a product to a certain
product set .S cannot increase the purchase probability for any product in .S. Therefore we would
never offer a product with negative displacement-adjusted revenues since this negative contribution
to the objective cannot be offset by an increase in purchase probability of the products with positive
contribution. This means that we are in this situation only interested in increasing bid prices so
as to gain potential improvements in the objective by closing products. Of course, we could also
use a different choice model and/or start with any other vector b € R™ as bid prices, and then
should also consider decreasing bid prices. Our numerical tests (using MNL) showed no policy
improvement from using zeros as initial bid price vector instead of using the best available marginal
capacity value estimate; on the contrary, policy performance was worse. Note that the algorithm is
guaranteed to stop after a finite number of iterations since the objective function has only a finite
number of distinct values (at most as many as there are feasible offer sets).

We ensure that S(b) C N(z) by setting the initial bid price for any resource ¢ with x; =0 suffi-
ciently high so that no product using this leg is offered. The offer set S(b) associated with b;(t,z) =
d(t,xz,4) is the set of all products whose contribution in terms of revenue minus estimated oppor-
tunity cost is positive, that is, f; —>".. y d(t,x,4) > 0. Intuitively, this is probably not restrictive

enough as this corresponds to the optimal bid price under independent demand assumption that
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Algorithm 1 Bid Price Heuristic under a General Choice Model for fixed ¢ and x
1: for all resources i set bid price b; + estimated marginal capacity value (¢, z, 1)

2: repeat

3: for alli=1:m do

4 Abf =min ;e singm) {fj — D kea, bit

5 Ab; = minjeAimS(b){ZkeAj b — fi} +e
6: bi < [br,...,bi + AbS, ..., b,

7 bi < [by,...,b;—Ab;, ... by

8: end for

9 beargmax{p(d),6(bL),6(02),0(b?),...,6(b™)}
10: if ¢(b) > ¢(b) then

11: b b

12: end if

13: until no further improvements

14: return bid price vector b

ignores buy-down effects. Hence, we wonder which products should be closed in order to achieve a
higher objective. Closing a product can be accomplished by increasing a bid price; if we steadily
increase b;(t,z), then we must reach a threshold where one (or more) products j € A are closed
for the first time (unless all products using this leg are closed already, of course, in which case we
do not change b;(t,z)). We perform this smallest possible change of b on every resource separately,
obtain accordingly m candidates, and select the one that yields the largest improvement in the
objective. The same logic applies to reduction of a bid price so as to offer a product that is closed
under the current bid price vector b. Note that we need to add a small positive number € in line 5
to Ab; because at equality of fare and sum of bid prices, the corresponding product is still closed.
The set S(b) denotes the set of products closed under the bid price vector b.

The heuristic is more formally given in Algorithm 1, where we suppress the dependence of the
bid price vector b on ¢t and x to improve readability. Note that the objective function ¢(b) that
we attempt to maximize with the heuristic is based on revenue contributions derived from the
estimated marginal values of capacity §, whereas the bid price b is solely used as control on the
availability of products as represented by the set S(b).

We would solve Algorithm 1 at each time step to obtain improved bid prices that are used to

control opening and closing of products, and thereby obtain a dynamic bid price policy. Also the
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Product Flight legs Fare f;

1 1 5% Segment [ Consideration set C; Preference vector v,

2 2 20 ! {1 :
3 1,2 30 2 {2} !

Table 1 Product definitions. Table 2 Segment definitions.
second central issue concerning the requirement of a feasible bid price control—as outlined in the
previous section—is resolved since we optimize in the decision space of feasible bid prices rather
than over all feasible product sets S C N(x).

The heuristic can be applied to any choice-based method that provides estimates of marginal
values of capacity, disregarding the choice model being used. Naturally, we have to restrict ourselves
to choice models that allow quick evaluation of the purchase probabilities P;(S) since otherwise
the evaluation of the objective function might be too expensive. Under the MNL choice model,
offering (closing) another product cannot increase (decrease) the purchase probabilities of other
available products. Therefore, it can never be optimal to offer a product with negative contribution
(fi—> e 4, d(z,i,t)). However, for a different choice model this could be possible (because offering
a product with negative contribution induces an increase in purchase for some other product with
positive contribution, for whatever reason). However, this situation seems fairly unlikely to us, thus
we confined ourselves to the consideration of closing products. The heuristic provides optimal bid
prices under independent demand if the marginal capacity value estimates are sufficiently accurate
since, in that case, the initial bid price vector is already optimal (though not necessarily the optimal
policy).

ExXAMPLE 1. In this example we show that the objective function is in general not concave under
the MNL choice model, and discuss a shortcoming of Algorithm 1. Consider a network with two
flight legs, the first from A to B, the second from B to C. Each flight has plenty of remaining
capacity left. The products are defined in Table 1. We use the MNL choice model as described
in the appendix with parameters defined in Table 2 for three customer segments, arrival rates
A=[1/3,1/3,1/3], and non-purchase preference vy = [1,1, 1]. Note that product 4 is higher priced
than product 3, yet customers from segment 3 prefer it over the cheaper alternative. Such situations
might arise from the restrictions (or their absence) that are associated with the product. Let us
assume that the current estimates of the marginal value of capacity are all zero. The objective
function that should be maximized over b € R? is therefore

d(b)= > Y NP;(S(b)f;,

JES(b) 1=1
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ob)

Figure 1 Objective function for Example 1.

and we depict it in Figure 1. The dotted lines show where the objective changes and are given
by b"A; = f; for all products j. First, note that this example shows that the objective ¢(b) is
unfortunately in general not concave for the MNL model. Second, the lines b" A; = f; only intersect
in the positive quadrant, hence there are no other function values in the three other quadrants than
those depicted. Finally, we can observe a shortcoming of Algorithm 1: it would start from [0,0] and
try out increases of the bid prices in directions Ab; and Ab,, respectively. The objective function
is lower in both directions than at the initial bid price vector, hence the algorithm would stop
with bid prices unchanged at zero. However, the optimal solution is clearly to offer {1,2,4} and
could be reached by projecting the current bid price vector b onto the space b7 A3 = f3, resulting
in an optimal bid price vector b* = [15,15]7. Algorithm 1 would be locally convergent if we would
also check bid price moves along projections onto each b A; = f; for all products j that constitute
facets on the set of bid prices that describe the current offer set. In our numerical experiments, we
do not use this idea because it can be expected to not scale very well with increasing number of

products. Still, for application to smaller networks this might very well be a useful addition.

5. Numerical Results

We tested various policies on three groups of test problems that are frequently being used in peer
publications, see Liu and van Ryzin (2008), Miranda Bront et al. (2009), Chaneton and Vulcano
(2009). These policies are:
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1. BP-MCYV: We solve the CDLP and use the optimal dual solution for the dynamic program-
ming decomposition as it was proposed by Liu and van Ryzin (2008) and Miranda Bront et al.
(2009) as outlined in the appendix. We obtain leg-level value function approximations v* for all
legs ¢ as described in the appendix. Bid prices can be obtained by setting each bid price equal to
the estimated leg-level marginal capacity value (MCV) unless there is no inventory left of resource
i; in this case, we set the bid price sufficiently high so that the product cannot be offered:

bi(t ) — {viﬂ(azi) —vj 4 (z; —1) forx; >1,
max; f; for x; =0.

2. BP-SG: Stochastic gradient method with 4 re-optimizations as proposed by Chaneton and
Vulcano (2009). This method is of interest particularly because it accounts for customer choice
behavior, uses bid price control and is applicable to problems where the considered product sets
of customer segments overlap.

3. BP-Heu: Our proposed heuristic method; bid prices are computed by Algorithm 1 using the
dynamic marginal capacity value estimates from CDLP-based dynamic programming decomposi-
tion as outlined in the appendix. The heuristic is not being used in the dynamic programs arising
from the decomposition, but only applied in implementing the policy.

4. GOS: This “General Offer Set” policy is also based on approximating the opportunity cost in
the general policy (2) using CDLP-based dynamic programming decomposition as outlined in the
appendix, however, we assume here that any combination of products can be offered. Therefore,
GOS is not necessarily compatible with bid price control. We obtain a solution in terms of a
combination of products by solving the following problem, using the heuristic from Miranda Bront

et al. (2009):
max AP;(S) | f; — Z (vigr (@) —vipa (@ = 1)) |- (5)

SeN) S5 i€A,

This is the type of policy that was frequently used in recent work and serves us as an “upper
bound” on policy performance because its feasible set is not constrained by the requirement that
the offer set must be representable with a bid price. We write “upper bound” in quotation marks
because the policies’ revenue performances are measured by simulation and because (5) is being
solved by a heuristic. Hence, the average revenues of GOS may occasionally be less than those of
a bid price policy.

We consider GOS in order to address the question as to how much improvement is achievable if
we could step away from bid price control in favor of product-level control where any combination

of products can be offered. Computing optimal bid prices (optimal in the sense of a bid price vector
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Leg 1 (morning)

Leg 2 (afternoon)

eg 3 (evening

Figure 2 Parallel Flights Example.

Table 3 Parallel Flights

Product Leg Class Fare
1 1 L 400
2 1 H 800
3 2 L 500
4 2 H 1000
5 3 L 300
6 3 H 600

Product definitions.

b* that maximizes ¢(b) as defined in (4)) is difficult, so instead we compare the bid price policies
defined above with GOS to illustrate the potential of improvement.

We test the different policies on three example networks that were used by Miranda Bront et al.
(2009) and Chaneton and Vulcano (2009). All examples use the multinomial logit choice model
with overlapping consideration sets which we specify in the appendix. For each test network, we
compare the revenue performance of the four policies by varying leg capacities via a scaling factor

a€{0.4,0.6,0.8,1} and by varying customers’ no-purchase preferences vj.

5.1. Parallel Flights Example
The first network example consists of three parallel flight legs as depicted in Figure 2 with initial
leg capacity 30, 50 and 40, respectively. On each flight there is a low and a high fare class L and
H, respectively, with fares as specified in Table 3. We define four customer segments in Table 4;
note that we do not give the preference values for the no-purchase option at this point. This is
because we consider various scenarios of this network by varying both the vector of no-purchase
preferences and the network capacity. The sales horizon consists of 300 time periods.

We ran 2000 simulations with each bid price policy and report in Table 5 the average revenue
results, load factors and percentage gaps of the average revenue achieved by BP-Heu relative to the

other policies. Negative percentage deviations are enclosed by parentheses. The relative percentage



14 Meissner and Strauss: Improved Bid Prices for Choice-Based Network Revenue Management

Table 4 Parallel Flights
Segment Consideration set Pref. vector )\ Description
1 {2,4,6} [5,10,1] 0.1 Price insensitive, afternoon preference
2 {1,3,5} [5,1,10] 0.15  Price sensitive, evening preference
3 {1,2,3,4,5,6} [10,8,6,4,3,1] 0.2 Early preference, price sensitive
4 {1,2,3,4,5,6} [8,10,4,6,1,3] 0.05 Price insensitive, early preference

Segment definitions.

error of these results was less than 0.5% with 95% confidence as reported in Table 6. BP-Heu yields
an average improvement of 2.2% over BP-MCV and 0.5% over BP-SG. In fact, BP-Heu reaches in
all cases the benchmark of the GOS. Note that the cases where BP-Heu slightly improves on GOS
are not statistically significant. This behavior is caused by solving the dynamic policy problem (5)
for GOS with the heuristic proposed in Miranda Bront et al. (2009), so that sometimes BP-Heu
might yield better results). This implies that bid price control does not necessarily deteriorate
revenues in this example; as long as the bid prices are being optimized. Apparently, this network
has no products that use more than one resource. Therefore, the only combinations of products
that cannot be offered under bid price control would be sets where we offer class L but close class
H on some flight leg. This clearly would not be optimal, hence it is not surprising to see that bid
price controls reach the revenue levels of GOS. On the other hand, choosing poor bid prices (for
example, according to BP-MCV) has a potentially dramatic effect of up to almost 8% revenue loss
as compared to BP-Heu.

The load factors in Table 5 indicate that BP-MCV is not restrictive enough as it results in the
highest load factors but with, in some cases, very poor average revenues as compared to BP-Heu.
This justifies our approach of closing some of the products offered under BP-MCV in order to
induce buy-up behavior. As expected, the benchmark GOS results in the lowest load factors in
combination with the highest revenues, which suggests that capacity utilization could be improved
if we could do away with the bid price control structure. Similar observations can be made in the

following examples.

5.2. Small Network Example

Next, we test the policies on a network with seven flight legs as depicted in Figure 3. In total,
22 products are defined in Table 7 and the network capacity is ¢ = [100, 150, 150, 150, 150, 80, 80],
where ¢; is the initial seat capacity of flight leg . In Table 8, we summarize the segment definitions

according to desired origin-destination (O-D), price sensitivity and preference for earlier flights.

The booking horizon has 7 =1000 time periods.
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Table 5 Policy results for Parallel Flights Example

o vo GOS LF BP-MCV LF BP-SG LF BP-Heu LF AJSEHe ABEHen A BE-Hou

[1,5,5,1] 38,974 0.99 39,158 1.00 39,115 1.00 38,974 0.99  (0.47) (0.36) 0.00

0.4 [1,10,5,1] 38,972 0.99 39,157 1.00 39,167 1.00 38,973 0.99  (0.47) (0.5) 0.00

[5,20,10,5] 36,955 0.99 36,534 0.99 37,027 0.99 36,957 0.99 1.16 (0.19) 0.01

[1,5,5,1] 55,967 0.98 53,957 0.99 55964 0.99 55,965 0.99 3.72 0.00 (0.00)

0.6 [1,10,5,1] 55,841 0.98 53,932 0.99 55,683 0.98 55886 0.98 3.62 0.36 0.08

[5,20,10,5] 51,360 0.95 52,395 0.99 52,029 0.98 51,402 0.95 (1.89) (1.21) 0.08

[1,5,5,1] 69,573 0.96 69,804 0.99 69,024 0.99 69,673 0.96 (0.19) 0.94 0.14

0.8 [1,10,5,1] 69,124 095 69,563 0.99 69,337 0.98 69,210 0.96 (0.51) (0.18) 0.12

[5,20,10,5] 60,056 0.90 59,167 0.92 59,132 0.92 60,056 0.90 1.50 1.56 0.00

[1,5,5,1] 76,979 0.95 71,268 0.97 75,073 0.96 76,746 0.96 7.69 2.23 (0.30)

1.0 [1,10,5,1] 75,695 0.90 70,549 0.94 74,064 0.92 75,605 0.92 7.17 2.08 (0.12)

[5,20,10,5] 62,599 0.77 59,850 0.79 62,105 0.76 62,603 0.77 4.60 0.80 0.01

LF: load factor. A% =100 * a/b — 100: percentage gap. Results for BP-SG taken from Chaneton and Vulcano
(2009).

Table 6 Relative percentage errors for Par-
allel Flights Example assuming Bid
Price Control
o Vo GOS BP-MCV BP-Heu
[1,5,51] 011  0.02 0.11
0.4 J[1,10,5,1] 0.11 0.02 0.11
[5,20,10,5] 0.14 0.08 0.12
[1,5,51] 0.14  0.06 0.11
0.6 [1,10,5,1] 0.15 0.07 0.12
[5,20,10,5] 0.29 0.17 0.29
[1,5,5,1] 0.23 0.15 0.23
0.8 [1,10,5,1] 0.25  0.17 0.24
[5,20,10,5] 0.34 0.28 0.34
[1,5,51] 025  0.20 0.25
1.0 [1,10,51] 030  0.24 0.31
[5,20,10,5] 0.40 0.39 0.40

Relative percentage errors with 95% confi-
dence based on 2000 simulations.
Table 9 contains the policy results of BP-MCV, BP-SG, BP-Heu and GOS with relative errors
less than 0.5% with 95% confidence as reported in Table 10. BP-Heu yields an average improvement
of 6.7% over BP-MCV and 1.1% over BP-SG. We observe that BP-Heu again achieves in most cases

the revenue levels of GOS, that means, bid prices are also in this example mostly able to capture
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Leg 1 (morning)

Leg 4 (morning)

Leg 2 (morning) Leg 5 (afternoon)

Leg 6 (morning)
Leg 3 (afternoon)
Leg 7 (afternoon

Figure 3  Small Network example.

the best product combinations if they are properly optimized. However, the importance of further
bid price optimization over simply choosing the marginal capacity values as in BP-MCV becomes
apparent. The policies deliver similar results when the network is highly congested (= 0.4) since
the optimal policy becomes simple then; we usually just offer the products with highest revenue.
If capacity is less tight, the gains of BP-Heu over BP-MCV become very large, particularly for the
cases of non-purchase preferences [1,5] and « being 0.8 and 1. This illustrates that BP-MCV is not
restrictive enough so that our heuristic can produce dramatic improvements, even over BP-SG. The
last test instance, on the contrary, has high non-purchase preferences and large network capacity so
that the capacity constraints are often not binding; accordingly, offering the unconstrained revenue

maximizing set of fares is here usually optimal, and the policies do not differ much.

5.3. Hub & Spoke Network Example
Consider the Hub & Spoke network in Figure 4. It has eight flight legs, one hub and four spokes.
Each flight ¢ has initial capacity ¢; = 200 and the booking horizon is divided into 7 = 2000 time
periods. There are 80 products in total which we define in Table 11 in the following way: products 1,
2, 3 and 4 correspond to the trip ATL-BOS using leg 3 in class Y, M, B and Q, respectively,
product 5, 6, 7, 8 are BOS-ATL using leg 4 in class Y, M, B and Q, respectively, products 9, 10,
11 and 12 are ATL-LAX using leg 2 in class Y, M, B and Q, respectively, and so on. Definitions of
the 20 customer segments for this example can be found in Table 12.

All simulation results in Table 13 have a relative error of less than 0.5% with 95% confidence as

reported in Table 14. BP-Heu yields an average improvement of 3.8% over BP-MCV and 1.8% over
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Table 7 Small Network example

Product Legs Class Fare || Product Legs Class Fare

1 1 H 1000 12 1 L 500

2 2 H 400 13 2 L 200

3 3 H 400 14 3 L 200

4 4 H 300 15 4 L 150

5 5 H 300 16 5 L 150

6 6 H 500 17 6 L 250

7 7 H 500 18 7 L 250

8 2,4 H 600 19 2,4 L 300

9 3,5 H 600 20 3,9 L 300

10 2,6 H 700 21 2,6 L 350

11 3,7 H 700 22 3,7 L 350

Product definitions.
Table 8 Small Network example
Segment O-D  Consideration set  Pref. vector Al Description

1 A—-B {1,8/9,12,19,20}  (10,8,8,6,4,4) 0.08 less price sensitive, early pref.
2 A—B  {1,89,12,1920} (1,2,2,8,10,10) 0.2 price sensitive
3 A—H {2,3,13,14} (10,10,5,5)  0.05 less price sensitive
4 A—H {2,3,13,14} (2,2,10,10) 0.2 price sensitive
5 H—-B {4,5,15,16} (10,10,5,5) 0.1 less price sensitive
6 H—B {4,5,15,16} (2,2,10,8) 0.15  price sensitive, slight early pref.
7 H—C {6,7,17,18} (10,8,5,5) 0.02 less price sensitive, slight early pref.
8 H—C {6,7,17,18} (2,2,10,8) 0.05 price sensitive
9 A—C {10,11,21,22} (10,8,5,5) 0.02 less price sensitive, slight early pref.
10 A—C  {10,11,21,22} (2,2,10,10)  0.04 price sensitive

Segment definitions.

BP-SG. The policy results show stable improvements of BP-Heu versus both BP-MCV and BP-SG

in all instances, however, BP-Heu does not achieve the revenue performance of GOS in most cases.

The fact that the Hub and Spoke Example has more multi-resource products than single-resource

products might be a reason for these results, as it makes on the one hand the calibration of the

best bid price vector more difficult, and might cause often situations where there is no bid price

vector that would yield the offer set that GOS would recommend. However, it is not clear whether

the under-performance of BP-Heu with respect to GOS particularly for the difficult instances

corresponding to [1, 5] can be attributed to faults inherent to the heuristic itself, or to the fact that

there exists no bid price that can represent the offer set recommended by GOS. In the last problem
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Table 9 Policy results for Small Network Example
a v GOS LF BP-MCV LF BP-SG LF BP-Heu LF ABPHew  ABDHew  ABEHeu

BP-MCV BP-5G GOS

[1,5] 149,300 0.98 149,287 0.99 149,693 0.99 149,287 0.98 0.00 (0.27) (0.00)

0.4 [5,10] 144,193 0.98 142,572 0.99 145,010 0.98 144,218 0.98 1.15 (0.55) 0.02
[10,20] 134,370 0.96 134,001 0.98 135,252 0.96 134,450 0.97 0.34 (0.59) 0.06
[1,5] 213,237 0.95 211,041 0.98 212,459 0.97 213,071 0.95 0.96 0.29 0.00

0.6 [5,10] 193,402 0.94 179,728 0.97 195,037 0.95 193,260 0.95 7.53 (0.91) (0.07)
[10,20] 167,909 0.94 158,007 0.95 165,638 0.94 167,712 0.94 6.14 1.25 (0.12)
[1,5] 262,421 0.90 217,577 0.96 238,041 0.94 262,408 0.90 20.60 10.24 (0.01)

0.8 [5,10] 220,631 0.93 198,690 0.94 214,847 0.92 220,112 0.93 10.78 2.45 (0.24)
[10,20] 185,943 0.88 178,364 0.90 185,150 0.88 184,118 0.90 3.23 (0.56) (0.98)
[1,5] 278,927 0.85 225,061 0.92 272,569 0.86 278,930 0.92 23.94 2.33 0.00

1.0 [5,10] 233,700 0.87 218,324 0.90 231,094 0.88 229,178 0.90 4.97 (0.83) (1.93)
[10,20] 191,421 0.79 188,778 0.82 189,349 0.82 190,254 0.82 0.78 0.48 (0.61)

LF: load factor. A% =100 * a/b — 100: percentage gap. Results of BP-SG taken from Chaneton and Vulcano
(2009). The non-purchase preference vectors are abbreviated: e.g., [1,5] stands for [1,5,1,5,1,5,1,5,1,5].

Table 10 Relative percentage errors for Small Network
Example
a Vo GOS nSim BP-MCV nSim BP-Heu nSim
[1,5] 0.07 2000 0.06 2000 0.07 2000
0.4 [5,10] 0.07 2000 0.05 2000 0.20 200
[10,20] 0.12 2000 0.10 2000 0.35 200

[1,5] 0.25 200 0.05 2000 0.25 200
0.6 [5,10] 0.38 200 0.08 2000 0.36 200
[10,20] 0.41 200 0.10 2000 0.41 200

[1,5] 0.33 200 0.08 2000 0.31 200

0.8 [5,10] 0.37 200 0.09 2000 0.37 200
[10,20] 0.45 200 0.14 2000 0.47 200

[1,5] 0.35 200 0.09 2000 0.35 200

1.0 [5,10] 0.41 200 0.13 2000 0.42 200
[10,20] 0.54 200 0.15 2000 0.50 200

Relative percentage error with 95% confidence and number of

simulations (nSim) for each policy.

instance in Table 13 there is a slightly positive gap between BP-Heu and GOS. This is because we
solved the dynamic policy problem (5) with the heuristic proposed in Miranda Bront et al. (2009),
so that sometimes BP-Heu might yield better results. The difference is not statistically significant.

Algorithm 1 runs very quickly for the considered network examples; in the worst case, it took
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Figure 4 Hub & Spoke Network example.

o

Table 11 Hub & Spoke Network Example

O-D Market

Legs

Revenue

M

B

ATLBOS/BOSATL
ATLLAX/LAXATL
ATLMIA /MIAATL
ATLSAV/SAVATL
BOSLAX/LAXBOS
BOSMIA /MIABOS
BOSSAV/SAVBOS
LAXMIA/MIALAX
LAXSAV/SAVLAX
MIASAV /SAVMIA

3/4
2/1
7/8
5/6
4,2/1,3
4,7/8,3
45/6,3
1,7/8,2
1,5/6,2
8,5/6,7

310
455
280
159
575
403
319
477
502
226

290
391
209
140
380
314
250
239
450
168

95
142
94
64
159
124
109
139
154
84

69
122
59
49
139
89
69
119
134
59

Product definitions.

about 0.1 seconds in Matlab on a 3GHz PC.
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Table 12 Hub & Spoke Network Example.

Segment C vy Al Segment (@} v Al
ATL/BOS H {1,2,3,4} {6,7,9,10} 0.015 || BOS/MIA H {41,42,43,44} {6,7,10,10} 0.008
ATL/BOS L {3.4} {8,10}  0.035 || BOS/MIA L {4344} {8,010}  0.03
BOS/ATH  {56,78}  {6,7,9,10} 0.015 || MIA/BOS H {45,46,47,48} {6,7,10,10} 0.008
BOS/ATL L {7.8} {8,10}  0.035 || MIA/BOSL {4748} {8,010}  0.03
ATL/LAX H {9,10,11,12} {5,6,9,10} 0.01 || BOS/SAV H {49,50,51,52} {5,6,9,10}  0.01
ATL/LAX L {11,12} {10,10} 0.04 || BOS/SAV L {51,52} {8,10} 0.035
LAX/ATL H {13,14,15,16} {5,6,9,10} 0.01 || SAV/BOS H {53,54,55,56} {5,6,9,10}  0.01
LAX/ATLL  {15,16} {10,10}  0.04 || SAV/BOSL {5556} {8,10}  0.035
ATL/MIA H {17,18,19,20} {5,5,10,10} 0.012 || LAX/MIA H {57,58,59,60} {5,6,10,10} 0.012
ATL/MIA L {19,20} {8,10} 0.035 || LAX/MIA L {59,60} {9,10} 0.028
MIA/ATL H {21,22,23,24} {5,5,10,10} 0.012 || MIA/LAX H {61,62,63,64} {5,6,10,10} 0.012
MIA/ATL L {23,24} {8,10} 0.035 || MIA/LAX L {63,64} {9,10} 0.028
ATL/SAV H {252627,28} {4,589} 0.1 || LAX/SAVH {65,66,67,68} {6,7,10,10} 0.016
ATL/SAV L  {27,28} {710} 003 || LAX/SAVL {6768} {10,10}  0.03
SAV/ATL H {29,30,31,32} {4,5,89} 0.01 || SAV/LAX H {69,70,71,72} {6,7,10,10} 0.016
SAV/ATL L {31,32} {7,10} 0.03 || SAV/LAX L {71,72} {10,10} 0.03
BOS/LAX H {33,34,35,36} {5,5,7,10} 0.01 || MIA/SAV H {73,74,75,76} {6,7,8,10}  0.01
BOS/LAX L {35,36} {9,10} 0.032 || MIA/SAV L {75,76} {9,10} 0.025
LAX/BOS H {37,38,39,40} {5,5,7,10} 0.01 || MIA/SAV H {77,78,79,80} {6,7,8,10}  0.01
LAX/BOSL {3940} {9,10}  0.032 || MIA/SAVL {7980} {9,10}  0.025

Segment definitions for Hub and Spoke Example.

Table 13 Policy results for Hub & Spoke Example

a v GOS LF BP-MCV LF BP-SG LF BP-Heu LF Aggie AZEEen ADElew
[1,5] 139,453 0.97 130,613 0.98 135452 0.95 136,180 0.98 4.26 0.54 (2.34)

0.4 [5,10] 112,730 0.97 109,532 0.98 110,287 0.93 112,322 0.97 2.55 1.85 (0.37)
[10,20] 94,869 0.97 91,780 0.98 93,274 0.94 94,506 0.97 2.97 1.32 (0.38)
[1,5] 160,613 0.96 147,114 0.98 152,212 0.93 155,794 0.98 5.90 2.35 (3.00)

0.6 [5,10] 130,483 0.97 123,394 0.98 126,816 0.95 128,726 0.97 4.32 1.51 (1.35)
[10,20] 110,167 0.97 105,206 0.98 107,408 0.96 108,763 0.97 3.38 1.26 (1.27)
[1,5] 174,469 0.96 156,306 0.98 160,586 0.95 166,640 0.98 6.61 4.00 (4.49)

0.8 [5,10] 144,039 0.97 135,892 0.98 139,038 0.96 140,972 0.97 3.74 1.39 (2.13)
[10,20] 120,699 0.96 117,624 0.97 118,618 0.97 120,275 0.96 2.25 1.40 (0.35)
[1,5] 183,682 0.95 167,345 0.98 170,349 0.89 176,414 0.97 5.42 3.56 (3.96)

1.0 [5,10] 153,932 0.94 147,014 0.97 150,021 0.97 152,049 0.96 3.42 1.35 (1.22)
[10,20] 126,782 0.90 126,383 0.91 125,795 0.92 126,865 0.91 0.38 0.85 0.07

LF: load factor. A¢ =100 % a/b— 100: percentage gap. Results for BP-SG taken from Chaneton and Vulcano

(2009). The no-purchase preference vector are abbreviated; e.g., [1,5] represents the vector [1,5,1,5,...,1,5] € R0,
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Table 14 Relative percentage errors for Hub and Spoke
Example

« Vo GOS nSim BP-MCV nSim BP-Heu nSim
[1,5] 0.33 200 0.31 200 0.32 200

0.4 [5,10] 047 200 0.43 200 0.48 200
[10,20] 0.52 200 0.47 200 0.52 200
[1,5] 0.50 162 0.50 99 0.50 143

0.6 [5,10] 0.50 173 0.50 108 0.50 169
[10,20] 0.50 174 0.50 133 0.50 166
[1,5] 0.50 136 0.50 69 0.50 117

0.8 [5,10] 0.50 131 0.50 90 0.50 121
[10,20] 0.50 154 0.50 111 0.50 142
[1,5] 0.50 111 0.50 75 0.50 101

1.0 [5,10) 0.50 111 0.50 81 0.50 105
[10,20] 0.50 146 0.50 127 0.50 138

Relative percentage errors with 95% confidence and number of

simulations (nSim) for each policy.
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6. Conclusion
We presented a simple and fast heuristic policy that can be used to iteratively improve bid prices
based on an initial estimate of marginal values of capacity that need to be supplied by any of the
available solution techniques. It can in principle be used with any choice model that allows for fast
evaluation of the objective function of the dynamic policy problem and yields promising results
for the considered test scenarios using the choice-based linear program (CDLP) with dynamic
programming decomposition with the multinomial logit choice model.

The simplicity and flexibility of the approach make it attractive for practical application. It
exploits that estimates of the marginal value of capacity are usually not sufficiently restrictive when
demand is dependent on availability of alternative products, and accordingly tries to increase bid

prices to avoid buy-down effects.
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Appendix

CDLP with Dynamic Programming Decomposition
Denote the expected total revenue from offering S by
R(S) =) _P;(9)f;,
jes
and the expected total consumption of resource i from offering S by
Ql(S):ij(S)a”, VZE{l,,m}
jes

Then the choice-based deterministic linear program (CDLP) is given by

ZopLp = MAX Z AR(S)h(S)

SCN
Z)\Qi(s)h(s)ﬁ% Vie{l,...,m},
SCN
> hS)=m,
SCN
h(S) >0, VS e N.

CDLP has 2™ — 1 decision variables corresponding to the all possible offer sets, however, only m + 1
constraints. Therefore, column generation can be used to solve (CDLP): We start from a pool of
columns that allows a feasible solution (e.g., using h()) =7 and h(S) =0 for all other S C N), and
solve that reduced master problem. The dual solution can be used to compute the reduced profit of
any other column, and we solve a small maximization problem to identify the column with highest
“reduced profit” that we subsequently add to the master problem. This process is repeated until
no further column can be found with positive reduced profit, in which case an optimal solution has
been identified. Let us denote the dual solution corresponding to the capacity and time constraints

by the vector n € R and o € R, respectively. The reduced profit maximization is then

m

Amax{R(S) = > Qi(S)n;} —o.

SCN
i=1

Dynamic Programming Decomposition

The optimal dual variables of the capacity constraints in the CDLP can be used to estimate the
marginal value of capacity on each resource, however, they suffer from the static nature of the model,
namely, that there is no dependency on the time or inventory. Liu and van Ryzin (2008) proposed
to introduce time- and inventory dependence by using a techniques called dynamic programming
decomposition. After solving CDLP and obtaining an optimal dual solution (n*,c*), we decompose

the network by the resource and approximate the value function v,(z) ~ v(x;) + 3_, ., iz for
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each resource i. When we substitute this approximation into the optimal dynamic programming
formulation we obtain one-dimensional resource-level dynamic programs:

v;(xl) = glcaﬁ,( { Z)‘Pj(s) <f7 - Z n, — (Utiﬂ(xi) - Uti+1(xi - 1))) } +Uti+1(33i)7 (6)
j€s KA ki
with boundary condition v, (z;) =0 for all ; and v;(0) =0 for all ¢. Having computed v*(-) for

all resources i, we can approximate the network value function by v,(z) =Y, vi(z;).

Multinomial Logit Choice Model

Multinomial Logit (MNL) is a random utility model for a finite number of alternatives: a customer
is assumed to have some utility valuation U, for each product j that can be decomposed into
a deterministic component v; and a random component {; so that U; = v; 4+ ;. Usually, one
assumes v; to be linear in a number of attributes such as price, service quality etc. The random
variables ¢; are independent identically distributed random variables with a Gumbel distribution
with zero mean and variance (um)?/6 for some scaling parameter u, and with 7 denoting the

constant 3.1415... Under this assumption, the purchase probability for product j is given by

_ exp(v; /1) o V;
e SR pryr B oy Rl ST

where v; := exp(v;/p) represents the preference of the customer for product j and j =0 stands for

P

J

the non-purchase option. We remark that the quantity vy can also be used to include the influence
of competition on the decision in that it may reflect the attractiveness of competitive products.

We divide customers into L segments, where customers within a given segment [ € {1,...,L}
are assumed to be homogenous in that they all consider the same set of products C; C N for
purchase—the so-called consideration set—and product preferences v;; for all products j € C; in
their consideration set. The means of segmentation are left unspecified; they could be based, for
example, on itinerary and departure time (early morning, midday etc). The probability that a
customer in segment | purchases product j € S when we offer the fare set S is given by P;;(S) =
Ulj/(Zkecms v, + vyo) for S C N, where vy is the preference for not buying anything. An arriving
customer belongs to segment [ with probability p, such that ), p, =1, hence we can define arrival
probabilities A; := p; A for every segment where A is the probability that a customer arrives in
a given time period. Taken together we have A =), \;. For a given segment [, let the vector
u; describe the product availability such that w; =1 if product j € C; is available and u; =0
otherwise. Accordingly, the probability that a customer from segment [ purchases product j can
be rewritten in the following form:

Uy Vi

P(uw) = .
() Zkecl UiV + Vio
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If the consideration sets are allowed to overlap, then the firm cannot distinguish with certainty
between different segments, and the purchase probability for product j given the offer set S and

the arrival of a customer is defined by

Py(S) =Y piPy(w(S)).



