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In recent years, many traditional practitioners of revenue management such as airlines or hotels were con-

fronted with aggressive low-cost competition. In order to stay competitive, these firms responded by reducing

fare restrictions that were originally meant to fence off customer segments. In markets where traditional

practitioners faced low-cost competition, unrestricted fares were introduced. Some markets, including airline

long-haul markets, were unaffected. And here restrictions could be maintained.

We develop choice-based network revenue management approaches for such a mixed fare environment

that can handle both the traditional opening or closing of restricted fare classes as well as handling pricing

of the unrestricted fares simultaneously. Due to technical constraints of the reservation system, we have a

limit on the number of price points for each unrestricted fare. It is natural to ask then how these price points

shall be chosen. To that end, we formulate the problem as a dynamic program and approximate it with a

mixed integer linear program (MIP) that selects the best price points out of a potentially large set of price

candidates for each unrestricted fare.

Numerical experiments illustrate the quality of the obtained price structure and that computational effort

is relatively low given that we need to tackle the large-scale MIP with column generation techniques.
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1. Introduction

Revenue Management (RM) is rooted in the airline industry, where it emerged in the mid 1980’s

as an impressively effective means to fend off the low-cost carriers that entered the US market

after its deregulation. Driven by these successful implementations, many other industries, such

as hotel chains, car rentals or trains (just to name a few), adopted RM practices. The idea was

based on effective customer segmentation according to price sensitivity, enabling the firm to offer

competitive rates while minimizing cannibalization of sales to less price-sensitive customers. This

segmentation occurs as a result of companies’ imposing restrictions on discounted tariffs. For exam-

ple, airlines and hotels use minimum length of stay restrictions, mandatory Saturday-night stays,

advanced booking requirements or age-based discounts. However, in recent years an increasing

number of firms successfully implemented low-cost business strategies that operate without the
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complicated tariff structure that combines discounted products with restrictions. Prominent exam-

ples are Ryanair or businesses of the easyGroup who advance this concept in many industries,

such as airline (easyJet), bus (easyBus) and many more. By advertising unfavorable comparisons

between their own tariffs and the ones of the incumbents, many of the latter felt the need to

offer at least some unrestricted products in order to counter the negative impressions created by

such campaigns. Currently we observe this trend most particularly in the airline business, where

traditional carriers such as Lufthansa or British Airways experiment with offering both restricted

and unrestricted fares. It also begins to manifest in other areas, such as the example of easyGroup

with their cross-sectoral restriction-free approach shows. It is therefire likely that we will frequently

face similar topics like the one on the agenda for the practitioner conference “eyefortravel Travel

Distribution Summit Europe” in 2005: “The rise of the ‘no frills’ hotel. Could this have the same

effect on the hospitality industry as low-cost carriers had on the airline sector?”.

The consequence of this development for the RM of incumbent firms who respond to this aggres-

sive competition by offering a mix of restricted and unrestricted products is the partial invalidation

of the premises for customer segmentation, although there is still a substantial part of the mar-

ket where the segmentation works well. However, current RM systems build upon the traditional

assumptions of offering only restricted products, and thus, there is a need for research in the

realm of mixed restriction and restriction-free fares, as illustrated by the recent practitioner article

by Vinod (2006). Despite these appeals from the practitioners facing these issues, little academic

research has been carried out to date in the context of mixed fare environments.

In the following, for the sake of illustration, we will present our approach in the airline context

and use airline terminology, but the ideas can transfer with few adjustments to other industries

that use multiple resources in their products as well. For example, transfer to the hotel industry is

done by exchanging flight legs with room nights, that means, an itinerary with multiple flight legs

becomes a stay over multiple nights, and so on.

We propose in this paper a revenue maximizing framework tailored to this new fare environment,

in particular, the sets of products that different customer segments consider for purchase are allowed

to overlap. More specifically, the model distinguishes between unrestricted and restricted fares,

incorporates a finite set of price points (obtained by a preprocessing method) for each unrestricted

fare, and leads to customer choice-based policies by providing opportunity cost estimates. Modeling

customer choice is of great importance, particularly since unrestricted fares can be considered for

purchase by different segments, given that the restrictions meant to fence low fares off have been

removed. A choice model suited to this task is the Multinomial Logit (MNL) with overlapping
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consideration sets, see Miranda Bront et al. (2009), for example. Some modifications allow us to

use their approach to tackle the problem at hand. We pursue the following main research issues:

• What network revenue management optimization approach can handle both traditional and

unrestricted demand such that it selects which fares to offer and, for the unrestricted ones, at what

price?

• How to pre-select price points for the unrestricted products, given that booking systems are

often limited in the number of price points they can manage, and that it might not be possible to

change the available price points during the booking horizon?

• What is the worth of an additional price point?

Our contribution lies within providing answers to these issues. We first propose a choice-based

RM model from which control policies can be derived that work in mixed fare environments. This

model uses a finite set of price points for each unrestricted fare and treats each price point as a

separate, “virtual” fare. At any point in time, at most one such virtual fare may be offered for each

unrestricted fare. Since the ability of booking systems to handle many fares is limited, the question

arises of which price points shall be used. To this end, we contribute to developing a dynamic

programming model that represents the optimal policy in both selecting the best price points and

in controlling which set of products to offer at any point in time. It is of theoretical interest only

due to the curse of dimensionality, but yields insights into pricing in this context, namely that

the later one commits to price points the better. In order to approximate this intractable dynamic

program, we develop a mixed integer linear program that provides us with a good feasible pricing

structure that can even be optimal, as illustrated by the numerical experiments. As a by-product,

we obtain the upper bounds on the value of having an additional price point by means of the

optimal dual solution of the linear programming relaxation, which is again an interesting feature

in testing fare structures.

The paper is organized as follows. In the next section we briefly review the related literature,

then we present the modeling framework in Section 3 followed by the mixed fare environment

optimization model given fixed prices in Section 4. The related question of how to pre-select price

points is discussed in Section 5, including presentation of the underlying dynamic program and the

linear mixed integer program approximation. Numerical evidence for the performance of the price

point pre-selection is provided in Section 5.3 before we conclude in Section 6.

2. Literature Review

Naturally, the first to identify the changes necessary in revenue management optimization with

respect to mixed fare environments was the practitioner community. A number of publications from
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airlines, software providers and pricing consultancies have appeared since 2003 that analyze the

changes in the business environment due to low cost competition. Academia followed with some

delay in providing potential answers to the outlined questions.

Let us first turn to the practitioner reports to frame the problem. Among the first was Foran

(2003) from British Airways, describing their dramatic cut of restrictions at the time to simplify

their fare structure. Many traditional airlines had very refined market segmentations in place so

that many network products ended up almost never being purchased. British Airways decided

to simplify fares, thereby accepting a loss of ability to segment because the high fare complexity

offset potential customers. This customer behavior was also stressed by Cary (2004) who further

added that business customers have become unusually price-sensitive, as compared to the nineties.

Low cost competition on the short-haul links undermined the traditional carriers’ ability to price

discriminate, as noted by Tretheway (2004), owing to the introduction of cheap one-way fares.

Many other companies followed suit in cutting restrictions, for example, the United Kingdom’s

GNER and Virgin Trains in 2005. While some firms such as bmi even replaced their whole revenue

management system with a one-way fare structure (see Donnelly et al. 2004), most others chose to

introduce low-cost fares along with the traditional ones.

Westermann (2005) stressed that often unrestricted fare structures need only to be introduced

on links facing low cost competition. In other markets, in particular connecting traffic, traditional

methods are still working well and should be kept since unrestricted fares usually lead to revenue

dilution. The resulting mix of restricted and unrestricted products is a major challenge and should

be addressed by the optimization module in an Origin-Destination (O&D) mechanism, because

markets where undifferentiated fare structures are being used can be identified by their O&D as

Westermann (2005) pointed out. He partitions airlines into four groups with respect to their fare

structure and outlines which type of RM approach is appropriate for each individual group. There

is (1) the low-cost business model that uses restriction-free prices over the whole network, (2)

network carriers that introduced undifferentiated fare structures without being able to differentiate

them from traditional markets because they use leg-based methods, (3) network carriers that did

not change their model completely in markets with low-cost competition but that rather just

introduced a few booking classes, and finally (4) network carriers that use O&D control and who

consequently can distinguish differentiated from undifferentiated demand.

The underlying problems of a mixed restricted / unrestricted fare approach are touched on in

the AGIFORS presentation of Weber and Thiel (2004) from Lufthansa Systems. They speak of

“augmented” optimization problems since input values such as prices are not only not fixed any
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more but also decision variables. However, they do not provide details of a solution approach.

Models of customer choice become important in the presence of solely price-orientated customers

as illustrated by Boyd and Kallesen (2004). They observed that customers tend to ignore fare

restrictions and focus mostly on price, such that demand is realized at the lowest available fare.

The credit crunch in 2008 and the subsequent economic downturn further aggravate this situation

in that demand for premium and business fares has broken down. For illustration, in February 2009

demand for such products dropped by 21% relative to the same month the year before, as announced

by IATA (2009). Though there is still demand which can be addressed by traditional means, a

firm must be aware of this mix of demand types and adjust their forecasting and optimization

systems accordingly, favorably in an O&D model since customer choice is best being modeled in

this context. Ratliff and Vinod (2005) and Vinod (2006) identify the issue of optimizing in a mixed

fare environment as future important problems.

From an academic perspective, not much work has been done yet to address this problem. Effects

of the entry of a low-cost carrier into a subset of a network of traditional airlines were studied

by Gorin and Belobaba (2004) with the Passenger Origin-Destination Simulator. They pursue the

question of if RM would become superfluous in a restriction-free pricing context and find that

the opposite is the case: RM becomes even more important for both the low-cost entrant as well

as for the established carriers. Competitive pressure arises on the most important point-to-point

short-haul routes, and as it is intuitively clear, network RM becomes increasingly important for

the incumbent airlines in order to favorably trade off between connecting and local passengers.

They do not consider the possibility of offering both restriction-free fares as well as traditional

ones. Instead, three situations are investigated: a no low fare competition, an attacking entrant

with a two-tier fare structure and with the incumbent airlines matching the price of the lowest

open fare (the one which is most restricted) in affected markets and, finally, the incumbent airlines

fully match the low fare structure on the affected markets. One of the main findings was that O&D

controls are very robust to changes in the competitive environment as compared to leg-level RM.

Such an O&D optimization method was presented at AGIFORS by Fiig et al. (2005) as an exten-

sion of the well-known displacement-adjusted virtual nesting (DAVN), and was labeled DAVN-MR.

They proposed to split demand into dependent and independent demand, and then to transform

dependent demand into independent demand. This would be fed into a linear program that returns

displacement costs. Fares are adjusted by subtracting displacement costs to account for the cost

of committing capacity, and, in addition, by subtracting price elasticity costs that reflect risk of

buy-down. Finally, booking limits are computed using the standard expected marginal seat revenue
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(EMSR) method. An interesting approach was presented more recently by Gallego et al. (2007)

who built their model on DAVN-MR but also included buy-up by using the multinomial-logit choice

model, and Gallego et al. (2009), who focus on the static single-leg RM problem. Their work is

somewhat related to ours in that they also use the MNL model to address both restricted and

unrestricted airfare conditions. However, we investigate dynamic multi-period network problems,

and, furthermore, focus on how to optimize the pricing structure of the unrestricted fares. Our

model is based on the work of Miranda Bront et al. (2009), who a consider choice-based network

RM approach for the MNL model with overlapping segment consideration sets, meaning there may

be products that are considered for purchase by more than one customer segment. This feature is

exploited in our work to depict choice in mixed fare environments. Meissner and Strauss (2009)

recently extended other RM approaches to allow for overlapping consideration sets and we note

that the model developed in this paper can be based on these approaches as well. As our intent is to

highlight ways to optimize the pricing structure in mixed fare environments, we confine ourselves

to the simpler model of Miranda Bront et al. (2009). The essential ideas would remain the same,

as only the policy performance can be expected to be better at the cost of significantly higher

computational requirements.

3. The Modelling Framework

In this section, we present our ideas of how the above described situation of a mixed fare environ-

ment can be modeled. We will focus on the example of an airline network for the sake of simplicity.

In general, our model admits both restricted and/or unrestricted fares on each flight leg or on

their combinations. For airline application, the practitioner reports Boyd and Kallesen (2004) and

Vinod (2006) suggest that on each flight leg of a traditional carrier that competes with a low cost

carrier on a particular leg, the former typically has a fare structure similar to an unrestricted one.

For connecting flights, however, demand is little affected so that restrictions can be maintained.

Thus, the examples given in this article assume that direct flights are only offered as an unre-

stricted fare whose price we control, and restricted fares on connecting flights where we control fare

availability. Further, we assume that connecting flights cannot be substituted by buying tickets

for its several flight legs separately. However, our model also admits any mix of restricted and

unrestricted fares for any itinerary; the assumption above is not restrictive and is only made for

the sake of a clearer presentation.

The notation of our model in the network case is geared to the network RM model of Liu and

van Ryzin (2008) and Miranda Bront et al. (2009) .
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Product

We consider a network consisting of m resources, for example flight legs in the airline application.

Each resource i has a fixed capacity of ci, and the network capacity is given by the corresponding

vector c = [c1, . . . , cm]T . The capacity is homogenous, i.e. all seats are perfectly substitutable and do

not differ, hence allowing us to accommodate all kinds of requests from the given general capacity

on a given flight leg. We need to find a common ground for the availability and pricing control,

respectively, and achieve this by treating every possible price for the unrestricted fare on a given

point-to-point flight i as a separate product. Hence, for each point-to-point flight i there is a set

of unrestricted “virtual fare products” Ui, each such product j ∈Ui in lieu for a specific price out

of a discrete price set. The entity of virtual fare products is denoted by U :=
⋃

i
Ui. In practice, we

can obtain the set Ui of price points for some unrestricted fare i by first defining a price interval

according to strategic considerations. This price range we partition into a (potentially large) number

of prices with equal distance to each other, and define Ui to represent all the resulting price points.

Note that the booking system does not need to deal with all these price points since we propose a

method to pre-select prices from these candidates in an off-line procedure.

A restricted product consists of a seat on one or several flight legs in combination with a fare

class and departure date. The set of restricted products is denoted by R, accordingly N :=R∪U

is the set of all n = |N | products in the network. Every product j ∈ N has an associated revenue

rj. By defining aij = 1 if resource i is used by product j, and aij = 0 otherwise, we obtain the

incidence matrix A = (aij) ∈ {0,1}m×n whose columns shall be denoted by Aj . Each column Aj

gives us information about which resources product j uses. Accordingly we write i∈Aj if resource

i is being used by product j. The state of the system is given by the vector of unused capacity

x = [x1, . . . , xm]T , and selling product j changes x to x − Aj. Defining A to be a binary matrix

entails the implicit assumption that no group requests are allowed. We emphasize that allowing

aij > 1 does not change the analysis. Therefore, it is straightforward to include group requests in

our model.

Customers and Choice Model

Customers arrive at random in the system (for example, on the website), subsequently decide what

product to purchase depending on the available alternatives, or potentially do not buy at all. The

(non-)purchase decision is made on the basis of a choice model that we explain in the following

paragraph.

There are L customer segments in total, and each segment l ∈ {1, . . . ,L} has a certain set Cl ⊂N

of products that they consider for purchase. For all products j ∈ Cl, customers of this segment
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have a preference value vlj. These values are derived by means of a random utility model. For an

introduction, see Section 7.2.2 in Talluri and van Ryzin (2004).

We assume that customers choose according to the Multinomial Logit (MNL) choice model,

which is very popular in practical applications because it is easy to use and very flexible. A

particular advantage is that we can allow consideration sets to overlap, reflecting the lacking means

of segmentation. Furthermore, we can adjust preferences for products according to the extent that

restrictions are being imposed on them, and any other attribute affecting customers’ perceived

utility. On the downside, note that we need to estimate preference values for all price points for

unrestricted fares, including those that might have never been offered before. To that end, we refer

to the literature on calibrating the MNL model, for example, the recent work of Ratliff et al. (2008)

or Vulcano et al. (2008).

The booking horizon is divided into T periods that are small enough such that there is at most

one customer arrival according to a time-homogeneous Poisson process with arrival rate λ. Time-

varying arrivals can also be captured by our models in that we first partition the time horizon

into subintervals on which arrivals can be assumed time-homogenous, and then carry out the same

analysis for each subinterval. Decisions on which products to offer must be made at the beginning

of each time period.

Since the consideration sets overlap, the firm cannot distinguish with certainty between different

segments. Therefore, we can only attach a probability pl,
∑

l pl = 1, to the event that a customer

belongs to segment l. We define Poisson processes with rate λl := plλ for every segment, so that

λ =
∑

l λl. The probability that a segment l customer purchases product j when the fare set S is

offered is given by

Plj(S) =
vlj

∑

ι∈Cl∩S
vlι + vl0

for S ⊂N, |S ∩Ui| ≤ 1,∀ i,

where vl0 is the preference for not buying anything. We remark that the latter quantity vl0 can

also be used to include the influence of competition on the decision in that it may reflect the

attractiveness of competitive products. The condition |S ∩ Ui| ≤ 1 for all direct flights i means

that at most one price for the unrestricted fare can be offered at a time. A major advantage of

this model is that every restricted or unrestricted fare, which is considered by some segment l,

can be compared to the others in consideration set Cl, and intuitive probabilities can be derived

that reflect preferences and offer set. That is, the segment’s preference vector essentially has the

function of shifting the purchase probabilities according to the offered set of fares.

Finally, the purchase probability for product j given the arrival of a customer is defined by

Pj(S) =
L

∑

l=1

plPlj(S).
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4. Optimize Price Values Given Price Levels

In this section, we derive control policies that can be used in a mixed fare environment given a

finite set of fixed price points for each unrestricted fare. We begin with stating the optimal policy

in terms of a dynamic programming formulation. Given a set Ui of fixed price levels for each

unrestricted fare i, we wish to maximize expected revenue from a sales process over the entire

booking horizon by offering the optimal mix of restricted products and unrestricted fares at a price

out of Ui for each flight i. This problem can be formulated as the following dynamic program,

where Vt(x) denotes the expected revenue from having uncommitted network capacity vector x at

time t:

Vt(x) = max
S⊂N(x):|S∩Ui|≤1,∀ i

∑

j∈S

λPj(S)
[

fj +Vt+1(x−Aj)
]

+
[

1−λ+λP0(S)
]

Vt+1(x)

= max
S⊂N(x):|S∩Ui|≤1,∀ i

{

∑

j∈S

λPj(S)
[

fj −
(

Vt+1(x)−Vt+1(x−Aj)
)

]

}

+Vt+1(x), ∀ t, x.

The boundary conditions are given by Vτ+1(x) = 0 for all inventory states x, and N(x) := {j ∈N :

x ≥ Aj} denotes the collection of all feasible offer sets. Theoretically, it is possible to solve this

problem via backward dynamic programming, but the size of the state space makes it intractable

for practical implementation. Thus we need computationally attractive methods to approximate

the optimal value function.

To that end, we draw on the choice-based deterministic linear programming model (CDLP) as

presented by Miranda Bront et al. (2009). CDLP under the MNL choice model can be used in a

mixed fare environment if overlapping consideration sets are allowed. We extended other approaches

to allow overlapping consideration sets in Meissner and Strauss (2009), and these approximations

could likewise be used to optimize in a mixed fare environment. We stick to the simpler CDLP for

the sake of clear illustration of the main ideas; the extension of the affine or the time- and inventory-

sensitive approach can be done analogously. Let us define the expected revenue from offering set S

by R(S) :=
∑

j∈S fjPj(S), the expected consumption of resource i by Qi(S) :=
∑

j∈S aijPj(S), and

Q(S) := [Q1(S), . . . ,Qm(S)]T . The modified CDLP is given by

zCDLP = max
∑

S⊂N :|S∩Ui|≤1,∀ i

λR(S)t(S)

∑

S⊂N :|S∩Ui|≤1,∀ i

λQ(S)t(S)≤ c,

∑

S⊂N :|S∩Ui|≤1,∀ i

t(S) = τ,
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t(S)≥ 0, ∀S ⊂N : |S ∩Ui| ≤ 1,∀ i.

The real-valued variables t(S) represent the total length of time that product set S should be

offered; under the assumption of time-homogeneous arrivals and choice probabilities, only total

duration is of importance and not when it should be offered. Expected resource consumption is

constrained by capacity vector c, and we can only offer products throughout the length τ of the

booking horizon. CDLP is identical to the one considered in Miranda Bront et al. (2009), the

only necessary adjustment relates to the fact that we may offer at most one price point for each

unrestricted fare at a time.

CDLP can be solved via column generation and yields the optimal dual values π∗
i to the capacity

constraints as static estimates for the marginal opportunity cost of each resource i. With this

information one could define the approximation Vt(x)≈
∑

i
π∗

i xk, but since it is static, we choose the

dynamic programming decomposition by the flight legs to refine the value function approximation

and to introduce time- and capacity-dependence as proposed by Liu and van Ryzin (2008). The

network is decomposed into single resource problems and the value function is approximated by

Vt(x)≈ V i
t (xi) +

∑

k 6=i π
∗
kxk, where V i

t (xi) is computed by the single resource dynamic program

V i
t (xi) = max

S⊆N :|S∩Uk|≤1,∀k

∑

j∈S

λPj(S)

[

fj −
(

V i
t+1(xi)−V i

t+1(xi − 1)−π∗
i

)

aij

−
∑

k∈Aj

π∗
k

]

+V i
t+1(xi), ∀ t,∀xi ≥ 1,

with V i
τ+1(xi) = 0 for all xi and V i

t (0) = 0 for all t on the boundary. Once we have obtained all

functions V i
t (·), we approximate the value function with Vt(x)≈

∑m

i=1 V i
t (xi).

The policy—we refer to it as D-CDLP—relies on this estimate of the value function and seeks

to maximize the (approximately) displacement adjusted revenue within the given time period by

max
S⊂N(x):|S∩Ui|≤1,∀ i

[

∑

j∈S

λPj(S)
(

fj −
∑

i

∆V i
t+1aij

)

]

, (1)

where ∆V i
t+1 := V i

t+1(xi) − V i
t+1(xi − 1) is the marginal value of resource i in time t + 1. The

problem (1) has a similar structure like the column pricing problems that arise in solving CDLP,

hence the problem can again be solved either by a mixed integer linear program or be tackled by

a greedy heuristic.

5. Pricing Structure Optimization

So far, the extension of CDLP to a mixed fare environment was straightforward and involved essen-

tially only an appropriate definition of feasible offer sets. The approach is based on the assumption
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that we are given a finite number of price points at which an unrestricted fare can be offered;

for example, we define prices on a uniform grid within certain reasonable upper and lower price

bounds, and let the policy decide which price we should use in a given time period. In practice,

however, the number of potential price points is often limited by the technical constraints of the

booking system. Consequently, a natural question to ask is which price points out of a finite set

would be the best to include in our pricing structure given a constraint on the total number of

price points per unrestricted fare. By pricing structure we mean the price points that the dynamic

policy will choose from in the booking process.

This section proposes methods that seek to optimize the pricing structure. We first consider

a dynamic programming formulation that represents an optimal policy and is of interest from a

theoretical point of view, but that is again computationally intractable. For practical purposes, we

propose a heuristic in the form of a linear mixed integer program that provides an upper bound

on the optimal expected revenue over all feasible pricing structures.

5.1. Dynamic Programming Formulation

Let us denote the maximum expected revenue to be obtained over time period t up to the end of

the booking horizon when we have capacity x still uncommitted by Ṽ (t, x, y), where y is a binary

vector that indicates whether a price point j ∈ U of an unrestricted fare is in the price structure,

that is, yj = 1 in this case. For given limit Li on each unrestricted fare i, the set S of all feasible

states is defined by

S :=

{

(t, x, y) : ∀ t, x and
∑

j∈Ui

yj ≤Li, ∀ i

}

.

Let us define the transition function for the y state—that means, the function that indicates how

y changes from one stage of the dynamic program to the next—for all j ∈U by

ŷj(S,y) :=

{

yj, if j /∈ S,

1, if j ∈ S.

The dynamic program that can determine the optimal price points to pre-select is then:

Ṽ (t, x, y) = max
S⊂N(x):|S∩Ui|≤1∀ i

{

∑

j∈S

λPj(S)
[

fj +V
(

t+1, x−Aj , ŷ(S,y)
)

]

+
(

1−λ+λP0(S)
)

V
(

t+1, x, ŷ(S,y)
)

}

, ∀ (t, x, y)∈ S, (2)

Ṽ (t,0, y) = 0, ∀ (t,0, y)∈ S,

Ṽ (τ +1, x, y) = 0, ∀ (τ +1, x, y)∈ S,

Ṽ (t, x, y) =−∞, ∀ (t, x, y) /∈ S.
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We formulate the dynamic program in a more general way in that it is permitted to offer new price

points during the time horizon. We could theoretically identify the optimal pre-selected pricing

structure by identifying a vector y that maximizes Ṽ (1, c, y) such that, for any unrestricted fare

i, we are only using Li price points. Direct solution is again computationally intractable. The

following Lemma confirms the intuitive result that up-front commitment to specific price points

potentially reduces the expected revenue compared to a situation where we only need to commit

to price points once we offer them.

Lemma 1 For any y1, y2 ∈ {0,1}|U| with y1 � y2, it holds that

Ṽ (t, x, y1)≥ Ṽ (t, x, y2) for all t and x.

Proof. Let y1, y2 ∈ {0,1}|U| with y1 � y2. It is clear from the boundary condition that Ṽ (t, x, y1)≥

Ṽ (t, x, y2) holds for t = τ +1 since the only possible values are either both 0 in the case that y1 and

y2 are feasible, both −∞ in case that both are infeasible or Ṽ (t, x, y1) = 0 and Ṽ (t, x, y2) =−∞ in

case that only y2 is infeasible.

Suppose now t≤ τ and the assertion holds for t+1. For any offer set S we have ŷ(S,y1)� ŷ(S,y2)

by definition of the transition function ŷ. It follows that

Ṽ (t+1, x−Aj, ŷ(S,y1))≥ Ṽ (t+1, x−Aj, ŷ(S,y2))

and

Ṽ (t+1, x, ŷ(S,y1))≥ Ṽ (t+1, x, ŷ(S,y2)).

Using the Bellman equation (2) for Ṽ (t, x, y1) and exploiting the latter inequalities yields the

desired result. �

Essentially, by fixing the price points at the outset we restrict our pricing flexibility over the

remaining time horizon. The result indicates that it would be beneficial for the firm to re-optimize

their price structure to account for the demand information that has become available in the

meantime. While it might not be possible to implement more than a certain number of price points

in a booking system, it might be possible to change the price points available in the system at least

once or twice during the booking horizon.

5.2. Linear Programming Approach

The main idea for the construction of a heuristic to tackle the dynamic program (2) is that the

objective of CDLP is an upper bound on the optimal expected revenue for a fixed pricing structure,

and therefore can be used as a measure of its quality. Though we do not know how close the bound
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is to the optimal value, we still can expect from numerical observations that an increase in the

bound reflects an increase in optimal expected revenue. Essentially, we maximize this upper bound

over all feasible price point combinations. This idea gives rise to the following linear mixed integer

program, where N := {S ⊂N : |S ∩Ui| ≤ 1,∀ i}:

(MIP) max
t,z

∑

S∈N

λR(S)t(S) (3)

∑

S∈N

t(S) = τ, (4)

∑

S∈N

λQ(S)t(S)≤ c, (5)

∑

j∈Uk

zj = Li, ∀ i, (6)

∑

S∈N :j∈S

t(S)≤ τzj , ∀ j ∈U , (7)

zj ∈ {0,1}, ∀ j ∈U , (8)

t(S)≥ 0, ∀S ∈N . (9)

The linear program (3)–(5), (9) is identical to the original CDLP. We introduced an additional

binary variable zj for every price point j ∈ U of any unrestricted fare which indicates whether j is

added to the pricing structure or not. Constraint (6) forces the total number of used price points

to be equal to the prescribed limit for the corresponding unrestricted fare i, and constraints (7)

ensure that zj = 1 as soon as price point j is being used for any positive amount of time; note that
∑

S⊂N :j∈S t(S) represents the overall time that j is offered throughout the booking horizon.

We propose to solve (MIP) by column generation for (mixed) integer programming. We use a

column pricing problem that identifies a new improving column based on dual variables obtained

from the restricted master problem (RMP). Initially generating Li columns corresponding to zj

for some j ∈ Ui, along with the column corresponding to t(∅), ensures a feasible starting point.

There are many possible ways of solving (MIP), for example, branch and price strategies as

described in Barnhart et al. (1998). We use a heuristic approach that involves first solving the

linear programming relaxation of the initial RMP via column generation; details of the approach

used in our numerical experiments are given in Section 5.3.

Let us have a closer look at the column pricing problem: we consider the dual of the relaxation

of (MIP) and derive the reduced cost formula for the column corresponding to t(S); generating

columns corresponding to zj can be done analogously. In our experiments, we generate all columns

belonging to the variables zj at the outset so that we focus only on generating the t(S) columns.

http://www.meiss.com/


14 Meissner and Strauss: Pricing Structure Optimization

We associate Lagrangian multipliers σ, πi, µi, ξj and oj with the constraints (4), (5), (6), (7) and

zj ≤ 1 for all j. The dual is given by

min
σ,π,µ,ξ,o

τσ + cT π +LT µ+
∑

j∈Ui∀ i

oj

λQ(S)T π +σ +
∑

j∈Ui∀ i

ξj1{j∈S} ≥ λR(S), ∀S ∈N ,

µk − τξj + oj ≥ 0, ∀ j ∈U ,

σ,µ free, π, ξ, o≥ 0.

For any S ∈N , the reduced cost of the column corresponding to t(S) is therefore

λR(S)−λQ(S)T π−σ−
∑

j∈Ui∀ i

ξj1{j∈S}.

Starting from a pool of columns, we would like to know which column next to generate and to add

to the master problem. We select them in a greedy fashion by maximizing the reduced cost over

all feasible offer sets, that is

max
u∈{0,1}n

∑

j∈U

[

(

fj −AT
j π

)

λPj(u)− ξjuj

]

+
∑

j∈R

(

fj −AT
j π

)

λPj(u)−σ

∑

j∈Ui

uj ≤ 1, ∀ i. (10)

Constraints (10) ensure that each unrestricted fare can be offered at most at one price point;

remember that this restriction was previously expressed by S ∈N . The term λPj(u) stands for the

probability that a customer arrives and purchases product j if we offer products as indicated by

the binary vector u, and is given by

λPj(u) =
∑

l

λl

vljuj
∑

ι∈Cl
vlιuι + vl0

,

as discussed earlier.

This column pricing problem can be reformulated as a mixed integer linear program or approx-

imately solved by using a greedy heuristic, as done for the CDLP by Miranda Bront et al. (2009)

in the presence of overlapping consideration sets.

An interesting feature of our approach is that it yields an estimate of the value of a price point

in the form of the Lagrangian multipliers ξj corresponding to the constraints (7). Suppose we have

an optimal solution (t, z) to (MIP), and zj = 0 for some j. If ξj > 0, increasing the right-hand side

of the constraint (7) by one time unit would enable us to offer price point j for one time period

and increase our revenue by ξj. Therefore, we can interpret ξj as the marginal value of a price
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point with respect to time. We can also state an upper bound for the value of having the limit on

the number of price points of an unrestricted fare relaxed by 1: The dual value µi of constraint (6)

gives us the increase in revenue due to this enhanced flexibility, however, it is an upper bound and

not the exact value of revenue increase because we consider the relaxed linear program.

So far, we assumed arrivals and customer preferences to be time-homogeneous. In reality, how-

ever, time-dependent purchase behavior has a great impact on which prices to offer. As indicated

earlier, we can approach this more general situation by dividing the booking horizon into suffi-

ciently smaller parts where we can assume time-homogeneity. We illustrate how to optimize the

pricing structure in this case with the following example.

Example 1 For the sake of simplicity, suppose arrivals and preferences are homogenous through-

out the first three quarters of the time horizon and then only change once, that is, we have Poisson

processes with rates λ1 and λ2 for the first and second part of the booking horizon, respectively.

Likewise, expected revenue R1(S) and expected resource consumption Q1(S) change to R2(S) and

Q2(S) at time period (3/4)τ . The mixed integer linear problem is then:

max
t,z

∑

S∈N

[

λ1R1(S)t1(S) +λ2R2(S)t2(S)
]

∑

S∈N

t1(S) =
3

4
τ,

∑

S∈N

t2(S) =
1

4
τ,

∑

S∈N

λ1Q1(S)t1(S)≤ c,

∑

S∈N

λ2Q2(S)t2(S)≤ c−
∑

S∈N

λ1Q1(S)t1(S),

∑

j∈Ui

zj = Li ∀ i,

∑

S∈N :j∈S

(

t1(S) + t2(S)
)

≤ τzj ∀ j ∈U ,

zj ∈ {0,1} ∀ j ∈U ,

t1(S), t2(S)≥ 0 ∀S ∈N .

Note that this problem is not considerably more difficult to solve than (MIP) because there are only

m + 1 more constraints—the additional variables are acceptable since we use column generation

anyway. In fact, each additional division of a homogeneous time interval will result in additional

m + 1 constraints. We conclude that incorporating time-dependence is possible, though the more

the booking horizon needs to be split up the more run time the computations will require.
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5.3. Numerical Results

In this section, we are more interested in how to choose a good pricing structure than how to

construct a good policy because the latter has been discussed in the recent literature already;

note that any policy based on MNL with overlapping consideration sets can be easily adapted

to mixed restricted / unrestricted fare environments. Therefore, we fix the policy and investigate

the impact of altering the pricing structure. We use the dynamic programming decomposition

policy D-CDLP of Liu and van Ryzin (2008) for all simulations because it is a currently used

benchmark. Recently, other policies have been proposed that can achieve higher revenues at higher

computational expense, see, for example, Zhang and Adelman (2009), Kunnumkal and Topaloglu

(2008), Zhang (2009) or TISA as presented in Meissner and Strauss (2009). These approaches can

be combined with our pricing method with accordingly improved revenue results.

We test our new method for pricing structure optimization in mixed fare environments under

the D-CDLP policy on several problem instances that shall illustrate the method’s performance

with respect to quality and run-time. By quality we refer to the percentage improvement of mean

revenue due to pre-committing to the pricing structure derived from (MIP), as opposed to simply

choosing the number of allowed price points on an uniform grid over the prescribed price interval.

The latter, trivial choice is our benchmark method of choosing a pricing structure. The run-time

required to solve (MIP) calls for an investigation since we face a mixed integer program with a

number of columns that increases exponentially with the number of products.

All computations for solving (MIP) were done in Matlab with Cplex 11.2 using the Tomlab

interface on a 3GHz PC. In order to solve (MIP) for a given problem scenario, we generate the

columns corresponding to zj for all j ∈ U , t(∅), and t({j}) for all j ∈N to form the initial restricted

master problem (RMP). Next, we solve the linear programming relaxation of this initial RMP and

use the resulting dual values to generate a new improving column. We add the column, re-solve the

linear program and repeat the process until no more improving columns can be found (we stop when

maximal reduced cost is less than 10−4). The optimal objective value of this final RMP represents

an upper bound on the optimal objective of (MIP). At this point, we reintroduce the constraints

“zj integer” for all j ∈ U to the RMP, and solve it with Cplex 11.2. We obtain a feasible mixed

integer solution whose objective forms a lower bound on the optimal objective value of (MIP).

We denote the percentage difference between this upper and lower bound as sub-optimality gap.

This heuristic works very well for our examples, in fact, optimality is reached in most cases. For

considerably larger networks, a heuristic similar to the one in Miranda Bront et al. (2009) should

be used for the column pricing to reduce the run time.
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We test the pricing structure optimization on two network examples. The first one is sufficiently

small such that we can identify the optimal pricing structures, the second is a hub and spoke

network that counts among the largest test cases considered in recent work in the related fields,

see, for example, Miranda Bront et al. (2009) or Chaneton and Vulcano (2009).

A H B
Leg 1 Leg 2

Figure 1 Small network example.

5.3.1. Small Network Example We first test the quality of price selection via (MIP) on

a network with two flights only, as depicted in Figure 1. It is small enough to allow us to run

simulations for each feasible price combination, so that we can identify the optimal pricing structure

by full enumeration. In this example, we assume that the firm offers an unrestricted fare U for

short-haul (direct) flights and traditional fares for the long-haul (connecting) traffic with fare

classes Y, M and Q. For both direct flights we have five potential price points; however, we assume

that we are limited to only three price points each that may form our price structure. Each origin-

destination combination has two segments associated with it, one with high and the other with

low price sensitivity. Restrictions on the traditional fares effectively fence off the lower fares for the

connecting traffic, however, on the direct flights business customers are able to buy down, resulting

in overlapping segments. We summarize the product and segment definitions in Table 1 and 2. In

the following, when we refer to a price point j = 3, for example, we mean the price point that is

described by the virtual product 3 in Table 1. The capacity of leg 1 and 2 is 50 and 70, respectively,

and we consider a time horizon of 1000 time periods.

For each direct flight, there are 5!/(2!3!) = 10 possible sets with three price points, so totally 100

price combinations in the network (note that restricted fares are always included in the pricing

structure). We do not need to consider subsets with less than three price points per direct flight

since we may choose never to offer an unrestricted fare at a certain price point. For each of the

100 pricing structures, we run simulations using the dynamic programming decomposition policy

D-CDLP based on CDLP’s dual values of the capacity constraints to obtain a close approximation

of the optimal expected revenue. The simulation is stopped once the relative error is less than

0.7% with 95% confidence, which is usually reached after about 200 simulations of the booking

process for this problem. We report the results in Figure 2. They demonstrate that the upper

http://www.meiss.com/


18 Meissner and Strauss: Pricing Structure Optimization

Product Resources OD Class Fare

1 1 A → H U 100
2 1 ” U 120
3 1 ” U 140
4 1 ” U 160
5 1 ” U 180
6 2 H → B U 100
7 2 ” U 120
8 2 ” U 140
9 2 ” U 160
10 2 ” U 180
11 1,2 A → B Q 300
12 1,2 ” M 350
13 1,2 ” Y 500

Table 1 Product definitions for Small Network Example. “Resources” indicates the resources which the respective

product utilizes.

# Segment Consideration set Pref. vector λl (%) vl0

1 A → H, high price sensitivity {1,2,3} [6,4,2] 15 10
2 A → H, low price sensitivity {1,2,3,4,5} [5,4,3,2,1] 6 10
3 H → B, high price sensitivity {6,7,8} [6,4,2] 15 10
4 H → B, low price sensitivity {6,7,8,9,10} [5,4,3,2,1] 6 10
5 A → B, high price sensitivity {11,12} [5,3] 3 10
6 A → B, low price sensitivity {13} [5] 2 10

Table 2 Segments, consideration sets, preference values and arrival rates for Small Network Example.

bound provided by the CDLP can reflect the relative behavior of the simulated mean revenue

very well. This is encouraging because (MIP) essentially maximizes CDLP over all potential price

combinations subject to the price point limits. For this network our method proposes to use price

points {1,3,5} for leg 1 and {6,7,8} for leg 2. When looking up the 18 price combinations that

maximize the simulated mean revenue (listed in Table 3), we observe that this pricing structure is

among them. Therefore, in this simple example, an optimal pricing structure has been identified.

The corresponding mean revenue is 1.7% higher than choosing price points on a uniform grid (that

is, {1,3,5} on leg 1 and {6,8,10} on leg 2).

5.3.2. Hub & Spoke Network Our second network example is considerably larger, though

still small in comparison to realistic network instances. This is because testing choice-based network

RM optimization is considerably more computationally involved than under independent demand.

However, the Hub & Spoke network corresponds to the largest network example of some recent

publications including Miranda Bront et al. (2009). We solve (MIP) with our heuristic approach

for different scenarios with respect to network capacity and number of price points, and analyze
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Pricing Structure # Leg 1 Leg 2

1 1 2 3 6 7 8
2 1 2 3 7 8 9
3 1 2 3 7 8 10
4 1 3 4 6 7 8
5 1 3 4 7 8 9
6 1 3 4 7 8 10
7 2 3 4 6 7 8
8 2 3 4 7 8 9
9 2 3 4 7 8 10
10 1 3 5 6 7 8
11 1 3 5 7 8 9
12 1 3 5 7 8 10
13 2 3 5 6 7 8
14 2 3 5 7 8 9
15 2 3 5 7 8 10
16 3 4 5 6 7 8
17 3 4 5 7 8 9
18 3 4 5 7 8 10

Table 3 List of all pricing structures that maximize simulated mean revenue. The restricted products are always

in the structure and therefore have been omitted. Structure 10 is the one identified by (MIP).

Segment Prices Preferences

ATLBOS/BOSATL H [310,290,95,69] [6,7,9,10]
ATLBOS/BOSATL L [95,69] [8,10]
ATLLAX/LAXATL H [455,391,142,122] [5,6,9,10]
ATLLAX/LAXATL L [142,122] [9,10]]
ATLMIA/MIAATL H [280,209,94,59] [5,5,10,10]
ATLMIA/MIAATL L [94,59] [8,10]
ATLSAV/SAVATL H [159,140,64,49] [4,5,8,9]
ATLSAV/SAVATL L [64,49] [7,10]

Table 4 Preference values at given prices that were used for inter- or extrapolation over the respective uniform

price grid.

run time and sub-optimality gaps. For each scenario, we evaluate the resulting pricing structure

by means of simulation and compare them to the benchmark method.

Solving (MIP) is not a trivial task since it is a mixed integer program with 1 + 2m + |U|

constraints and an exponentially growing number of variables, where m is the number of flight

legs and |U| is the total number of price points in the network belonging to unrestricted fares.

We assume that there is exactly one unrestricted fare for each direct flight that is to be priced at

one out of p price points, giving a total of |U| = mp price points, while the airline can maintain

restrictions on connecting traffic.

The Hub & Spoke Network example consists of eight flights as depicted in Figure 3, each with
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Figure 2 CDLP-based upper bounds on optimal expected revenue and simulated mean revenue results for each

of the 100 possible pricing structures with three price points. Simulations used D-CDLP policy. Results

indicate that maximising the upper bound over all pricing structures can identify good ones.

O-D Market Legs Revenue
Y M B Q U

BOSLAX/LAXBOS 4,2/1,3 575 380 159 139 -
BOSMIA/MIABOS 4,7/8,3 403 314 124 89 -
BOSSAV/SAVBOS 4,5/6,3 319 250 109 69 -
LAXMIA/MIALAX 1,7/8,2 477 239 139 119 -
LAXSAV/SAVLAX 1,5/6,2 502 450 154 134 -
MIASAV/SAVMIA 8,5/6,7 226 168 84 59 -
ATLBOS/BOSATL 3/4 - - - - [69,310]
ATLLAX/LAXATL 2/1 - - - - [122,455]
ATLMIA/MIAATL 7/8 - - - - [59,280]
ATLSAV/SAVATL 5/6 - - - - [49,159]

Table 5 Product definitions for the Hub & Spoke Network Example.

capacity 200 that we scale up or down with a parameter

α ∈ {0.6,0.8,1,1.2}

to account for different load factors. Products are defined in Table 5 in the appendix: There are 48

restricted fares for connecting traffic, and one unrestricted fare for each direct flight. For example,
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Segment Cl vl λl

BOSLAX H {1,2,3,4} {5,5,7,10} 0.01
BOSLAX L {3,4} {9.10} 0.032
LAXBOS H {5,6,7,8} {5,5,7,10} 0.01
LAXBOS L {7,8} {9,10} 0.032
BOSMIA H {9,10,11,12} {6,7,10,10} 0.008
BOSMIA L {11,12} {8,10} 0.03
MIABOS H {13,14,15,16} {6,7,10,10} 0.008
MIABOS L {15,16} {8,10} 0.03
BOSSAV H {17,18,19,20} {5,6,9,10} 0.01
BOSSAV L {19,20} {8,10} 0.035
SAVBOS H {21,22,23,24} {5,6,9,10} 0.01
SAVBOS L {23,24} {8,10} 0.035
LAXMIA H {25,26,27,28} {5,6,10,10} 0.012
LAXMIA L {27,28} {9,10} 0.028
MIALAX H {29,30,31,32} {5,6,10,10} 0.012
MIALAX L {31,32} {9,10} 0.028
LAXSAV H {33,34,35,36} {6,7,10,10} 0.016
LAXSAV L {35,36} {9,10} 0.03
SAVLAX H {37,38,39,40} {6,7,10,10} 0.016
SAVLAX L {39,40} {9,10} 0.03
MIASAV H {41,42,43,44} {6,7,8,10} 0.01
MIASAV L {43,44} {9,10} 0.025
SAVMIA H {45,46,47,48} {6,7,8,10} 0.01
SAVMIA L {47,48} {9.10} 0.025
ATLBOS H {49,. . . ,48+p} interp 0.015
ATLBOS L {49, . . . ,48 + p} interp 0.035
BOSATL H {49 + p, . . . ,48 +2p} interp 0.015
BOSATL L {49 + p, . . . ,48 +2p} interp 0.035
ATLLAX H {49 +2p, . . . ,48 +3p} interp 0.01
ATLLAX L {49 +2p, . . . ,48 +3p} interp 0.04
LAXATL H {49 +3p, . . . ,48 +4p} interp 0.01
LAXATL L {49 +3p, . . . ,48 +4p} interp 0.04
ATLMIA H {49 +4p, . . . ,48 +5p} interp 0.012
ATLMIA L {49 +4p, . . . ,48 +5p} interp 0.035
MIAATL H {49 +5p, . . . ,48 +6p} interp 0.012
MIAATL L {49 +5p, . . . ,48 +6p} interp 0.035
ATLSAV H {49 +6p, . . . ,48 +7p} interp 0.01
ATLSAV L {49 +6p, . . . ,48 +7p} interp 0.03
SAVATL H {49 +7p, . . . ,48 +8p} interp 0.01
SAVATL L {49 +7p, . . . ,48 +8p} interp 0.03

Table 6 Segments, consideration sets, preference values and arrival rates for the Hub & Spoke Network Example.

p is the number of potential price points per leg, interp indicates that the preference values have been

inter- or extrapolated based on the data in Table 4. Preference for non-purchase vl0 is 5 for all H

segments, and 10 for all L segments.
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LAX ATL

BOS

SAV

MIA

2

3

1

4

5

6

78

Figure 3 Hub & Spoke Network example.

Product 1 is a ticket BOS to LAX in class Y for $575 using legs 2 and 4, Product 4 is BOS

to LAX in class Q for $139 and Product 5 is LAX to BOS in class Y using legs 1 and 3. The

restricted products are identical to those in Example 3 in Miranda Bront et al. (2009), for the

products on direct flights, however, we substituted in unrestricted fares that shall be priced at one

out of maximal Li = 4 price points for all legs i. We choose this limit because in the restricted

environment we have four fare classes, so for technical reasons (regarding the booking system),

there might be only four “price slots” available to which we need to commit at the beginning of the

booking horizon. The model (MIP) needs to choose the best four prices out of a set of p prices for

each flight on a uniform grid defined over the interval given in Table 5. For example, the candidate

price points for ATLBOS are {69,69 +∆, . . . ,310} with the price step ∆ = (310− 69)/(p− 1).

We have two customer segments per origin-destination combination, a high-yield (H) and a low-

yield (L) one, the former being less price sensitive than the latter. Preference values for the prices

of Y, M, Q and B class similar to those in Miranda Bront et al. (2009) were used to inter- and

extrapolate those on the uniform grid with cubic splines, the related information being given in

Table 6 and 4. For example, the segment ATLBOS H considers prices between $69 and $310. The

benchmark method would select four price points with uniform distance to each other, namely

{69,149.33,229.67,310}. Cubic spline interpolation as mentioned above yields {10,8.26,8.27,6} as

corresponding preference values.

The underlying rationale is that customers increasingly ignore restrictions, particularly on short-

haul flights, and focus on price instead. See Boyd and Kallesen (2004), for example. Hence we

interpret the preference values in the restricted context as being purely motivated by price, giving

rise to the idea of extrapolation to other price points to obtain a mixed fare environment under

similar customer behavior.
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p = 4 p = 8 p = 16 p = 32
α M(s) P(s) #GC M(s) P(s) #GC M(s) P(s) #GC M(s) P(s) #GC

0.6 0.9 68.5 101 0.4 41.8 49 0.5 77.4 49 0.8 227.4 60
0.8 0.4 31.4 45 0.3 39.7 38 0.7 94.3 53 1.4 264.5 57
1.0 0.3 22.0 36 0.2 14.2 16 0.3 34.9 23 0.3 70.0 20
1.2 0.1 7.5 12 0.0 3.2 3 0.1 13.5 9 0.1 29.5 9

Table 7 CPU time for Hub & Spoke Network Example. p number of prices points from which only four are

chosen, α scaling parameter of the flight capacities, M(s) time spent on solving Master problems in

seconds, P(s) time spent on pricing columns in seconds, #GC number of generated columns.

p = 4 p = 8 p = 16 p = 32
α UB OptGap UB OptGap UB OptGap UB OptGap

0.6 126,552 0.000 127,224 0.000 127,500 0.000 127,510 0.000
0.8 138,486 0.000 139,189 0.000 139,571 0.000 139,619 0.000
1.0 144,437 0.000 145,257 0.000 145,359 0.000 145,410 0.000
1.2 145,170 0.000 146,247 0.000 146,256 0.000 146,309 0.000

Table 8 Upper bounds on (MIP) and sub-optimality gaps of the identified mixed integer solutions. α scaling

parameter of the flight capacities, UB upper bound, OptGap percentage optimality gap.

p = 4 p = 8 p = 16 p = 32
α MR ±% LF MR ±% LF MR ±% LF MR ±% LF ∆%

0.6 124,764 0.30 0.97 125,299 0.28 0.97 125,580 0.29 0.97 125,589 0.29 0.97 0.66
0.8 136,850 0.26 0.97 137,439 0.26 0.97 137,803 0.26 0.96 137,730 0.26 0.97 0.64
1.0 143,352 0.26 0.93 144,239 0.25 0.92 144,351 0.25 0.92 144,407 0.25 0.92 0.74
1.2 144,950 0.27 0.83 146,012 0.26 0.83 146,035 0.26 0.82 146,086 0.26 0.82 0.78

Table 9 Simulation results for Hub & Spoke Network Example using policy D-CDLP. p number of prices points

from which only four are chosen, α scaling parameter of the flight capacities, MR mean revenue, ±%

percentage relative error with 95% confidence, LF empirical load factor, ∆% percentage improvement

of MR for p = 32 relative to MR for p = 4.

Despite the fact that our method can also be used to compare policies in restricted versus mixed

fare environments, our purpose is to illustrate the performance of the pricing structure optimization.

The tests were carried out under the assumption that we seek to identify four price points out of a

uniform grid with p∈ {4,8,16,32} candidates for each direct flight simultaneously. For each p, we

vary the scaling parameter α to reflect different load factors. Note that the case p = 4 corresponds

to the benchmark method as the pricing structure is trivial in this case. Nevertheless we solve

(MIP) for this case as well because we require information on the dual variables for the dynamic

programming decomposition.

We report CPU times for solving the restricted master problems (RMP) and column pricing

problems associated (MIP) along with the number of generated columns in Table 7. Run times
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are very small for the cases of higher capacity (α∈ {1,1.2}) since the capacity is less constraining.

But even for the more interesting cases of tight capacity it took in the worst scenario 265 seconds

to solve (MIP). Cplex generally required less than a second to find a mixed integer solution to

the final RMP.

Table 8 reports the upper bounds on (MIP) obtained from solving the linear programming

relaxation of (MIP), and the corresponding percentage optimality gap. In all cases, an optimal

solution has been identified. The bounds are also upper bounds on the optimal expected revenue;

this follows from the fact that the optimal objective of CDLP represents an upper bound for a

fixed pricing structure.

The simulated mean revenues in Table 9 are each based on a sample of 500 demand streams. The

column corresponding to p = 4 represents the benchmark method of choosing the 4 price points for

each unrestricted fare simply to have uniform distance to each other. Compared to using (MIP)

to select 4 price points out of p = 32 candidates on a uniform grid over the same price interval, we

observe in all cases significant improvements of 0.7–0.8%.

6. Conclusion

We propose a choice-based network revenue management model that can be used to optimize the

pricing structure in unrestricted or mixed restricted/unrestricted fare environments. In addition,

the model provides upper bounds on the value of an additional price point. Some numerical exper-

iments indicate that revenue improvements may be gained. An optimal solution can be obtained

by a dynamic programming formulation which, though being computationally intractable, is of

theoretical interest. For example, we can derive the insight from it that late commitment to price

points can potentially increase expected revenues. If we can re-define price points at some time

during the booking horizon, this could be exploited by resolving our proposed model, and changing

the pricing structure accordingly. Naturally, this will be constrained by the cost of price changes

and technical obstacles.

As for future research, our model could be used to perform simulation studies to examine under

which circumstances entirely unrestricted product structures are to be preferred over mixed ones,

or how the pricing structure changes in response to changes in the customers’ purchase behavior.

The pre-selection of price points can also be paired with recent achievements in tightening the

upper bound on the optimal expected revenue, see, for example, Talluri (2008). Such an approach

can be expected to yield potentially better results because we use the upper bound as the objective

to maximize over all possible pricing structures, and accordingly a tighter bound should yield a

more accurate objective.
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