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We present improved network revenue management methods that assume customers to choose according
to the multinomial logit choice model with the specific feature that the sets of considered products of the
different customer segments are allowed to overlap. This approach can be used to model markets with weak
segmentation: For example, high-yield customer segments can be modeled to also consider low yield products
intended for low-yield customers, introducing implicit buy-down behavior into the model.

The arising linear programs are solved using column generation and involve NP-hard mixed integer sub
problems. However, we propose efficient polynomial-time heuristics that considerably speed-up the solution
process. We numerically investigate the effect of varying the intensity of overlap on the respective policies
and find that improvements are most pronounced in the case of high overlap, rendering the method highly
interesting for weakly segmented market applications.
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1. Introduction
Many service providers like airlines or car rentals currently face a problem that shakes the founda-
tions of their revenue management systems, namely an increasingly inefficient underlying market
segmentation. Revenue management (RM) is based on exploiting the different price sensitivities of
segments such as business and leisure customers. However, the pressure from low cost competition
has led the service providers to cut many restrictions while their corporate customers increased
control on their travel expenses. For instance, the business travel report Verband Deutsches Reise-
management e.V. (2008) identified growing cost awareness and more systematic cost control as in
former years in business travel for Germany, and a global one of American Express Business Travel
(2008) even stated that “companies have focused on buying smarter by re-visiting, re-writing and
enforcing travel policies, while encouraging and often requiring employees to book their trips online
and further in advance via pre-trip auditing tools.“ As a result, business travelers increasingly also
consider purchasing products that are intended for other segments and therefore undermine RM
systems and cause revenue dilution since, in contrast, most RM models assume that the offered
range of products can be partitioned into disjoint sets corresponding to the respective segments. In
addition, often they furthermore assume that demand for the individual products is independent
of the availability of alternatives.

In this paper, we extend network RM methods that are based on a multinomial logit customer
choice model to allow for products to be under consideration for purchase by more than one
segment corresponding to the more realistic situation described earlier. Very little work exists on
this issue; so far we only know of Miranda Bront et al. (2009) who present a model that likewise
assumes customers to choose according to a multinomial logit model that allows for overlapping
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consideration sets. They construct policies in the following way: First, to obtain approximations of
the opportunity cost for the sale of a product, they propose a linear programming formulation that
provides this information through the dual values of its capacity constraints. These values can then
be used in a dynamic programming decomposition by the flight legs to obtain improved estimates
that are eventually being used in the actual control policies to compute the set of products to
offer at a given state. A specific issue with this approach is the large number of variables in the
linear program so that large-scale techniques such as column generation need to be applied. The
affiliated column generation subproblem of identifying the next column to include in the master
problem is NP-hard as shown by Miranda Bront et al. (2009), however, they propose a polynomial
time heuristic to accelerate the solution process.

We use their approach as a benchmark and contribute to the field by (1) extending the approaches
of Zhang and Adelman (2009) and Meissner and Strauss (2009) to allow for overlapping considera-
tion sets where we frequently need to solve NP-hard column generation subproblems, and thus (2)
we propose efficient polynomial time heuristics that can be employed to considerably speed up these
two methods. The resulting (3) policies are shown to outperform the policy of Miranda Bront et al.
(2009). Solving the linear programs corresponding to the extended approaches of Zhang and Adel-
man (2009) and Meissner and Strauss (2009) is considerably more expensive than the benchmark
method, however, policies derived from their solutions exhibit revenue improvement even without
the expensive dynamic programming decomposition that is needed in the benchmark approach. (4)
We numerically investigate the effect of varying the intensity of overlap on the respective policies
and find that improvements are most pronounced in the case of high overlap of consideration sets,
rendering them particularly attractive for application in weakly segmented markets.

The paper is organized as follows: In the next section we review the most related literature
on network RM with and without accounting for choice behavior, before we present the problem
framework, corresponding dynamic programming formulation and different solution approaches via
linear programming in Section 3. These linear programs (LP) are solved with column generation,
where the arising sub-problems can be solved via mixed integer LPs or greedy heuristics as discussed
in Section 4. Having investigated solution techniques of the LP, we then turn our attention in
Section 5 to the question of how to design dynamic policies based on the LP solution. We present
numerical results in Section 6 and summarize our findings in Section 7.

2. Literature Review
A comprehensive description of both scientific and applied Revenue Management (RM) can be
found in the book of Talluri and van Ryzin (2004b), and the reader interested in an overview of
research over the last decades shall be referred to the reviews of McGill and van Ryzin (1999) and
Chiang et al. (2007).

Network RM was in former years mostly researched under the assumption that demand for the
offered products is independent of which alternatives the firm makes available to the customer.
It is a valid assumption in the case that customer segments are well fenced off, and recent work
includes for example Adelman (2007) and Topaloglu (2009). Optimal policies for the network RM
problem can be obtained from solving a dynamic program, however, its high dimension makes this
approach intractable. Therefore, one needs to approximate the value function to obtain heuristic
policies. Adelman (2007) proposes a time-dependent approximation and shows that upper bounds
on the optimal objective value are tightened relative to the standard so-called deterministic linear
programming (DLP) approach, and that the obtained policies perform better in a simulation study.
Similarly, Topaloglu (2009) improves on the DLP by using Lagrangian relaxation to obtain a time-
and inventory-level dependent approximation. Farias and Van Roy (2007) are closely connected
to this research in that they base their approximation on Adelman’s using a linear programming
approach to approximate dynamic programming that depends on both time and inventory level.

http://www.meiss.com/
http://www.meiss.com/


Meissner and Strauss: Choice-Based RM under Weak Segmentation 3

The same approximation was independently proposed by Talluri (2008) who focuses on the rela-
tionships of upper bounds on the optimal objective value of the aforementioned approaches by
Topaloglu and Adelman, respectively, as well as the DLP and a randomized linear programming
model.

The incorporation of choice behavior into network RM has increasingly gained attention as the
means of segmentation erode in many markets. A prominent example is the airline industry, where
the rise of the low-cost carriers has caused the incumbents to cut down fare restrictions, resulting in
a weakly segmented market. As of the time of this writing, the financial crisis contributes even more
to this as many business travelers show increased price sensitivity that further weakens the already
rather low fences. In this situation, choice behavior becomes a crucial element in a RM system.
Among the first approaches with a general model of customer choice is Talluri and van Ryzin
(2004a) for a single flight leg problem. This work was generalized to the network context in Liu and
van Ryzin (2008) with particular attention being paid to the multinomial logit choice model (MNL)
with disjoint consideration sets, that means, customers from different segments do not consider the
same product for purchase. Their approach was pioneered by Gallego et al. (2004) and improved
by several groups of researchers including Zhang and Adelman (2009), Kunnumkal and Topaloglu
(2008) and Meissner and Strauss (2009). Another major step was taken by Miranda Bront et al.
(2009) in that they drop the assumption of disjoint consideration sets, since this provides the
opportunity to model a situation where some customers do not obey the product fences any more.

Our work builds on the paper of Miranda Bront et al. (2009) and is closely related to Meissner
and Strauss (2009) and Zhang and Adelman (2009) as outlined in the introduction.

3. Problem Formulation
3.1. Notation
In this section we introduce the basic notation that is used to describe the network revenue man-
agement models. Let us start with defining a product j: It consists of a unit of one or several
resources, a fare price fj and possibly certain restrictions and rules that the firm imposes in an
attempt to segment the market. In total, let there be m resources indexed by i, each with an initial
inventory level of ci homogeneous units that can be used to accommodate all requests. The corre-
sponding network capacity vector c is then given by c = [c1, . . . , cm]T . There are n products defined,
indexed by j ∈N , where N = {1, . . . , n} denotes the set of all products. We store information on
which product is using which resource (and vice versa) in the incidence matrix A ∈ {0,1}m×n by
defining aij := 1 iff product j uses a unit of resource i, and setting aij := 0 otherwise. Therefore, the
columns Aj of matrix A indicate which resources product j uses. Resource availability is reflected
by the vector x = [x1, . . . , xm]T , with xi being the remaining inventory of resource i. Upon selling
product j we need to commit capacity, hence available inventory levels change to x−Aj .

Customers are divided into L segments where customers within a given segment l ∈ {1, . . . ,L}=:
L̃ are considered to be homogenous in that they all have the same consideration set Cl ⊂N and
product preferences vlj for all products j ∈ Cl in their consideration set. A very important point
is that we allow for overlapping consideration sets reflecting the weak market segmentation. Every
product can potentially be considered by several segments, and therefore from the firm’s perspective
demand cannot be affiliated with a certain segment.

The time horizon is partitioned into τ time periods that are small enough such that there is
at most one customer arrival according to a Poisson process with arrival rate λ. Maturity of all
resources is at time τ +1 at which they become worthless. Decisions take place at the beginning of
each time period before this period’s demand can be observed (since demand depends on the offer
set). An arriving customer belongs to segment l with probability pl,

∑

l
pl = 1, so that we can also

define Poisson processes with rate λl := plλ for every segment. Taken together we have λ =
∑

l
λl.
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Choice Model. We are interested in modeling weak product segmentation, namely that the
firm cannot prevent that customers from a certain segment might consider products targeted at
some other segment as well. This situation can be represented by using the multinomial logit model
(MNL) with overlapping consideration sets. The MNL model is constructed by using the preference
vector vl for each segment l as mentioned earlier to define the probability that a segment l customer
purchases product j when the product set S ⊆N is offered by

Plj(S) =
vlj

∑

j∈Cl∩S
vlj + vl0

,

where vl0 is the preference for not buying anything. We set vlj equal to zero if the product j is not
offered or not in the consideration set Cl. A major advantage of this model is that every product
which is considered by some segment l can be compared to the others in consideration set Cl, and
intuitive probabilities can be derived that reflect preferences and offer set. The MNL model has
been criticized for its so-called independence from irrelevant alternatives (IIA) property, namely,
that

Pj1(S1)Pj2(S2) = Pj1(S2)Pj2(S1),

for all sets S1, S2 ⊂N and all products j1, j2 ∈ S1∩S2. In words, the probability that both products
j1 and j2 are chosen is independent from whatever other products are available. Nevertheless, the
model is attractive due to its intuitive design and particularly due to its analytical tractability
which makes it one of the most popular choice models in the area of marketing and revenue
management. Some choice models that avoid the IIA property are available, for an introduction
see Talluri and van Ryzin (2004b).

Since the firm cannot distinguish with certainty between different segments, the purchase prob-
ability for product j ∈N given the offer set S ⊆N and the arrival of a customer is defined by

Pj(S) =
L∑

l=1

plPlj(S). (1)

3.2. Optimality Equation
The RM problem can be stated as the following dynamic program, where vt(x) denotes the optimal
expected revenue from having uncommitted network capacity vector x at time t:

vt(x) = max
S⊆N(x)

{
∑

j∈S

λPj(S)[fj − (vt+1(x)− vt+1(x−Aj))]

}

+ vt+1(x). (2)

The boundary conditions are given by vτ+1(x) = 0,∀x≥ 0. The set N(x) := {j ∈N : x≥Aj} is the
set of all feasible products that we can offer given available network capacity x. Theoretically, it
is possible to solve this problem quite easily via backward dynamic programming, but the curse of
dimensionality of the decision and state space makes it intractable for practical implementation.
Thus we need methods to approximate the optimal value function but which reduce the com-
putational load. The following linear programming formulation (EQ) will serve as the starting
point of our considerations. It is equivalent to the dynamic program (2) which can be shown from
fundamental results of value iteration, see Theorem 3.4.1 in Powell (2007).

(EQ) min
v(·)

v1(c)

vt(x)≥ λ
∑

j∈S

Pj(S)
[
fj − (vt+1(x)− vt+1(x−Aj))

]
+ vt+1(x) ∀t, x,S ⊆N(x).

The decision variables are vt(x), ∀ t, x, and (EQ) has a large number of constraints so that the
problem becomes intractable for a large state space. Thus, the question is how to reduce the number
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of decision variables such that solving the LP becomes tractable (e.g. by using column generation
on the dual). The basic idea is to approximate vt(·) in (EQ) by given K basis functions φk(·) in
order to reduce the number of variables, that means one considers the approximation

vt(x)≈
K∑

k=1

Vt,kφk(x) ∀ t, x.

3.3. Time-Sensitive Approximation (TSA)
Zhang and Adelman (2009) considered the affine approximation

vt(x)≈ θt +
m∑

i=1

Vt,ixi ∀ t, x,

with boundary conditions θτ+1 = 0 and Vτ+1,i = 0 for all resources i ∈ {1, . . . ,m}. In this approxi-
mation, Vt,i estimates the marginal value of an inventory unit of resource i in period t. Note that
this does not take into account how much inventory is still available. The authors substitute the
resulting approximation into (EQ) and construct its dual which is given below:

(TSA) zTSA = max
Y

∑

t,x,S⊆N(x)

[
∑

j∈S

λPj(S)fj

]

Yt,x,S

∑

x,S⊆N(x)

xiYt,x,S =

{

ci if t = 1,
∑

x,S⊆N(x)(xi−
∑

j∈S
λPj(S)aij)Yt−1,x,S ∀ t = 2, . . . , τ,

∀ i,

∑

x,S⊆N(x)

Yt,x,S =

{

1 if t = 1,
∑

x,S⊆N(x) Yt−1,x,S ∀ t = 2, . . . , τ,

Yt,x,S ≥ 0, ∀ t, x,S ⊆N(x).

The last set of equality constraints together with the non-negativity of Y induce that Yt,x,S can
be seen as state-action probability in a fixed time period t. In this light, the first set of equality
constraints can be interpreted as expected inventory at time t > 1 being equal to expected inventory
at the previous time period minus the expected resource consumption in between, and being
equal to the full capacity ci at the beginning of the time horizon. Accordingly, the objective is
maximization of expected revenue over the whole time horizon.

3.4. Time- and Inventory-Sensitive Approximation (TISA)
Meissner and Strauss (2009) present an approximation based on Farias and Van Roy (2007) which
does not only account for dependency of the value function on time but also on the level of
inventory that is still available. The motivation behind this approach is the intuitive notion that
marginal utility of a resource decreases in its inventory level, hence a non-linear approximation
should provide a better estimate of the true value function. The increased computational workload
that can be traded off against approximation accuracy by splitting the inventory of every resource
i into Ki inventory level ranges, and then to assign for each range k a variable Vt,i,k which estimates
the marginal resource value at any inventory level within this range at time period t. The number
of inventory levels contained within range k is denoted by si

k, and can reach from unit size 1
to resource capacity ci. Note, in particular, that it can vary between resources. For notational
convenience, we also introduce for each resource i a function

r(·) : {0,1, . . . , ci}→N,

http://www.meiss.com/
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for which r(0) := 0 and for xi > 0 we set r(xi) := k if and only if inventory level xi is contained in

range k. We approximate the value function with

vt(x)≈ θt +
m∑

i=1

[ r(xi)−1
∑

k=1

si
kVt,i,k +(xi−

r(xi)−1
∑

k=1

si
k)Vt,i,r(xi)

]

. (3)

We further assume that Vτ+1,i,k = 0 for all i, k, and that θτ+1 = 0. The extreme cases are either to

define only one inventory range for each resource resulting in less required computational effort, or

to define as many ranges on every resource as it has capacity resulting in better policies through

better approximation quality. In the former case, the resulting approximation is identical to the

one used in TSA and its marginal values of capacity are independent of the inventory level, in

the latter we are having the finest approximation which takes every possible inventory level into

account. Therefore, in the following we confine ourselves to investigating these extreme cases, as

they will provide the frame in between which the policy performance can be traded off against

computational burden by adjusting the degree of inventory level aggregation.

Hence we consider the case Ki = ci for all resources i, which reduces the approximation (3) to

vt(x)≈ θt +
m∑

i=1

xi∑

h=1

Vt,i,h.

Substituting this approximation into (EQ) yields a linear program with a reduced number of

variables, and forming its dual results in:

(TISA) zTISA = max
Y

∑

t,x,S⊆N(x)

(λ
∑

j∈S

Pj(S)fj)Yt,x,S (4)

∑

x,S⊆N(x)

Yt,x,S1{xi≥h} = 1 ∀h∈ {1, . . . , ci}, i, t = 1, (5)

∑

x,S⊆N(x)

(Yt,x,S−Yt−1,x,S)1{xi≥h}−λ
∑

x,S

∑

j∈S

Pj(S)aijYt−1,x,S1{xi=h}

= 0 ∀h∈ {1, . . . , ci}, i, t > 1, (6)
∑

x,S⊆N(x)

Yt,x,S = 1 for t = 1, (7)

∑

x,S⊆N(x)

(Yt,x,S−Yt−1,x,S) = 0 ∀t > 1, (8)

Yt,x,S ≥ 0 ∀ t, x,S ⊆N(x). (9)

To provide some intuition about this linear program, note that we can interpret Yt,x,S as state-

action probabilities because of constraints (7,8,9). It follows that
∑

S
Yt,x,S is the probability of

being in state x at time t. Therefore, constraints (5) can be seen as probability of being in time

t = 1 in a state x such that we have at least an inventory level of h at resource i. Since t = 1 is the

start of the booking horizon, this probability must equal 1 for all h and i. Constraints (6) describe

the further evolution over time, namely the probability of being at time t in a state x such that we

have at least an inventory level of h at resource i is equal to the probability of the same situation

at the previous time period t− 1 minus the expected consumption between decision time points

t−1 to t if the inventory xi is currently at level h. The objective is again maximization of expected

revenue over the whole time horizon.
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3.5. Static Approximation CDLP
We use the approach of Miranda Bront et al. (2009) as a benchmark for our policies. Let us define
the expected revenue from offering set S by R(S) :=

∑

j∈S
fjPj(S), and the expected consumption

of resource i by Qi(S) :=
∑

j∈S
aijPj(S), and Q(S) := [Q1(S), . . . ,Qm(S)]T . They start from the

following choice-based deterministic linear program (CDLP):

zCDLP = max
∑

S⊆N

λR(S)t(S)

∑

S⊆N

λQ(S)t(S)≤ c,

∑

S⊆N

t(S)≤ T,

t(S)≥ 0, ∀S ⊆N.

CDLP is solved via column generation and yields the optimal dual values π∗
i to the capacity

constraints as static estimates for the marginal opportunity cost of each resource i. With this
information one could define the approximation vt(x)≈

∑

i π
∗
i xk, but since it is static, a dynamic

programming decomposition by the flight legs is used to refine the value function approximation
and to introduce time- and capacity-dependence. We briefly outline this method when discussing
policies.

4. Column Generation
Structural properties of the two approaches TSA and TISA were discussed in Zhang and Adelman
(2009) and Meissner and Strauss (2009), respectively. Although both papers focus on the MNL
model with disjoint consideration sets, all results related to upper bounds, efficient sets etc carry
over since the choice probabilities were kept general.

However, matters become more difficult when it comes to the actual question of how to solve
the arising large-scale problems. Both approaches generate linear programs with many variables
but relatively few constraints. Hence column generation lends itself naturally to being the solution
technique of choice, but only as long as we can relatively cheaply identify which columns shall
enter the master problem. The column pricing problems are NP-hard as shown by Miranda Bront
et al. (2009) and consume considerable effort as we might need to solve them several thousand
times. In the case of disjoint consideration sets, this column generation subproblem was shown to
be a simple ranking procedure. However, this is not possible any more if consideration sets may
overlap. Thus we extend in the following the mixed integer linear programming formulations of
Zhang and Adelman (2009) and Meissner and Strauss (2009) to the case of having a MNL choice
model with overlapping consideration sets and propose greedy heuristics for both approaches that
exhibit good practical performance as demonstrated in numerical experiments.

4.1. Approaches for TSA
The maximum reduced profit of the time-sensitive approximation (TSA) is given by

max
t,x,S⊆N(x)

∑

j∈S

λPj(S)

[

fj −
m∑

i=1

aijVt+1,i

]

−
m∑

i=1

(Vt,i−Vt+1,i)xi− θt + θt+1.

This can be simplified by considering the problem for a fixed time period t ≥ 1. We abbreviate
the expression by defining the worth of a product as its associated revenue minus the approximate

http://www.meiss.com/
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opportunity cost to provide this product in a given time period: wj := fj −
∑

i aijVt+1,i. This leads
us to

max
x,S⊆N(x)

∑

j∈S

λPj(S)wj −
m∑

i=1

(Vt,i−Vt+1,i)
︸ ︷︷ ︸

=:∆Vi

xi− θt + θt+1. (10)

Before we transform this non-linear problem into a linear one, let us have a look whether we can
eliminate x and thereby simplify the problem further. Zhang and Adelman (2009) showed that
Vt,i is non-increasing in time so that ∆Vi ≥ 0 for all i. Suppose we keep a certain set S ⊆N fixed,
S 6= ∅, and we define

x(S) = [x1(S), . . . , xm(S)]T ,

such that
xi(S) := max

j∈S
aij ∀ i∈ {1, . . . ,m}.

We substitute this x(S) into (10) and obtain a problem without dependence on x:

max
S⊆N

∑

j∈S

λPj(S)wj −
m∑

i=1

∆Vi(max
j∈S

aij)− θt + θt+1 (11)

Proposition 1An optimal solution to (11) is also optimal for (10), and for an optimal solution
(x∗, S∗) to (10) S∗ is optimal for (11) with the same objective value.

Proof Let S∗ ⊆ N be an optimal solution to (11). Defining x∗
i := maxj∈S∗ aij , we clearly have

feasibility to (10), that is S∗ ⊆N(x∗). We refer to the objective value under the maximum in (10)
as f(x,S), and to the one of (11) as g(S).

Suppose now that (x̃, S̃) is an optimal solution to (10) with f(x̃, S̃)− g(S̃) > 0. It follows that

m∑

i=1

≤0
︷ ︸︸ ︷

∆Vi(max
j∈S̃

aij − x̃i) > 0.  

Note that feasibility of (x̃, S̃) to (10) implies x̃i ≥ aij for all j ∈ S̃, hence x̃i ≥maxj∈S̃ aij for all i.
It follows that there is no optimal solution to (10) yielding a strictly higher objective in (11). The
proposition follows from

f(x̃, S̃)≤ g(S̃)≤ g(S∗) = f(x∗, S∗).

For the second part of the proposition, let (x∗, S∗) be an optimal solution to (10). It follows
that f(x∗, S∗) ≤ g(S∗). Suppose f(x∗, S∗) < g(S∗). However, (x(S∗), S∗) is feasible to (10) and
f(x(S∗), S∗) = g(S∗), which contradicts the optimality of (x∗, S∗).

�

Therefore, we can drop x from the optimization problem.

Mixed Integer Linear Programming approach. We transform now the nonlinear problem
(11) into a mixed integer linear program: To that end, we replace the term maxj∈S aij by a non-
negative variable ξi with appropriate constraints, resulting in the problem (12) below where we
described the set S in terms of an availability vector u ∈ {0,1}n such that uj = 1 if and only if
j ∈ S. Accordingly, the general choice probabilities are now expressed in terms of u instead of S.
Note that instead of integer variables xi we have now real valued variables ξi.

max
ξ,u

∑

j∈N

λPj(u)wj −
m∑

i=1

∆Viξi− θt + θt+1 (12)

ξi ≥ aijuj, ∀ j ∈N,∀ i : ∆Vi > 0 and aij > 0,
u∈ {0,1}n,
ξ ≥ 0.
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We defined the incidence matrix A to be binary, that means, all products use at most one unit of
any resource. This implies that maxj∈N aijuj ∈ {0,1}, and equal to 1 if and only if

∑

j∈N
aijuj > 0.

Therefore, we can describe the maximum with a binary variable ξi := maxj∈N aijuj in the following
way: we enforce that ξi = 0 if the maximum is zero by imposing the constraints

ξi ≤
∑

j∈N

aijuj, ∀ i : ∆Vi > 0, (13)

and likewise ξi = 1 if
∑

j∈N
aijuj > 0 by

(∑

j∈N

aij

)

ξi ≥
∑

j∈N

aijuj , ∀ i : ∆Vi > 0. (14)

Overall we obtain:

max
ξ,u

∑

j∈N

λPj(u)wj −
m∑

i=1

∆Viξi− θt + θt+1

subject to (13)–(14),
u∈ {0,1}n,
ξi ∈ {0,1}, ∀ i : ∆Vi > 0.

Having dealt with x, we turn our attention now towards the terms involving the choice prob-
abilities Pj(u). Depending on the choice model, these terms can cause difficulties in solving the
problem since Pj(·) might be a complicated nonlinear function of u. We are interested in using
the MNL choice model with overlapping consideration sets which provides the following purchase
probabilities,

λPj(u) =
L∑

l=1

λl

vljuj
∑

k∈Cl
vlkuk + vl0

,

as we defined them in (1). We substitute them into problem (12):

max
ξ,u

L∑

l=1

∑

j∈Cl

λl

vljuj
∑

h∈Cl
vlhuh + vl0

wj −
m∑

i=1

∆Viξi− θt + θt+1

ξi ≥ aijuj , ∀ j ∈N,∀ i : ∆Vi > 0 and aij > 0,
u∈ {0,1}n,
ξ ≥ 0.

This problem is nonlinear in the first term but can be transformed into a linear program by a
change of variables. We introduce new variables yl := 1/(

∑

h∈Cl
vlhuh + vl0) and zlj := ujyl. The

latter relationship is enforced by the following constraints:

zlj ≤ yl, ∀ l ∈ L̃, j ∈Cl, (15)

zlj ≥ 0, ∀ l ∈ L̃, j ∈Cl, (16)

zlj ≤Muj, ∀ l∈ L̃, j ∈Cl, (17)

zlj ≥ yl−M(1−uj), ∀ l∈ L̃, j ∈Cl, (18)
uj ∈ {0,1}, ∀ j ∈N. (19)

We need to choose the constant M sufficiently large, but as small as possible since it is well-known
that “Big M” methods can cause numerical difficulties and slow convergence for large M . Setting
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M := maxl 1/vl0 is sufficiently large and a tight upper bound on yl and zlj . The definition of yl is

enforced by

yl ≥ 0, ∀ l ∈ L̃, (20)
∑

j∈Cl

vljzlj + ylvl0 = 1, ∀ l ∈ L̃. (21)

We obtain eventually the linear program below:

max
ξ,y,z,u

L∑

l=1

∑

j∈Cl

λlvljwjzlj −
m∑

i=1

∆Viξi− θt + θt+1

ξi ≥ aijuj, ∀ j ∈N,∀ i : ∆Vi > 0 and aij > 0,

subject to (15)–(21),

ξ ≥ 0.

The problem is similar to the one obtained by Zhang and Adelman (2009) in the special case of

disjoint consideration sets, however, we replaced the integer variables xi with continuous variables

ξi. Furthermore, in the presence of overlapping consideration sets we might have considerably

more variables than in the disjoint consideration set case since there are
∑

l |Cl|> n variables zlj

in the above problem in contrast to the n variables zlj for the case that consideration sets are

disjoint. Potentially, there might be as many as nL variables zlj if every segment would consider

every product. Even without this added complexity, since the problem is NP-hard and has to be

solved frequently it is of considerable practical interest to obtain polynomial time heuristics which

reduce the computational effort. In the next section we propose such a heuristic that exploits our

observation that x can be removed from the problem.

Greedy Heuristic for TSA. Based on the work of Prokopyev et al. (2005) on heuristics for

general linear-fractional programmes, Miranda Bront et al. (2009) propose a heuristic for solving

the column pricing problem under the MNL choice model with overlapping consideration sets for

a simpler approximation, namely the choice-based deterministic linear program (CDLP).

For the affine approximation that we consider here, the column pricing problem (10) has an

objective that not only depends on the offer set S, but also on the vector of available capacity x,

both of which are interdependent due to the constraints S ⊆N(x). However, due to Proposition 1,

we can focus on solving the problem (11) where we eliminated x instead of the original formulation

(10). Our proposed Algorithm 1 attempts to solve problem (11) for a fixed time period t by adding

products consecutively to an initially empty set in a greedy fashion. We start in line 1 by sorting

out all products with non-positive worth wj . Among the ones that remain, we then look for the

single product that maximizes the objective (lines 2–10); in line 6 we make use of our earlier

observation that an optimal x vector is given by x(S) for any given offer set. In what follows, we

continue to add products to the set S = {j∗} in the same way. That is, we compute the objective

for the current set S with a new product temporarily added, and choose to permanently add the

one yielding the highest objective. We stop this process once (x,S) are not changed any more.

The heuristic has worst-case complexity O(n2(L+m)) and performs very well as exhibited by the

numerical experiments reported below.

We emphasize that the heuristic can also be applied to the disjoint consideration case, therefore

our heuristic also accelerates the solution of the model presented by Zhang and Adelman (2009).
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Algorithm 1 Greedy heuristic for TSA column generation subproblem at time t

1: Let S̃ ⊆N be the set of products with positive worth wj > 0 ∀j ∈ S̃
2: for all j ∈ S̃ do
3: ξj←

∑

l∈L̃
λlwjvlj/(vlj + vl0)

4: for i = 1 to m do {define x({j})}
5: ∆Vi← Vt,i−Vt+1,i

6: Define xj
i ← aij

7: end for
8: ζj←∆V T xj

9: end for
10: j∗← argmaxj∈S̃(ξj − ζj), set S = {j∗}, S̃ = S̃ \ {j∗}, x← xj∗

11: repeat
12: for all j ∈ S̃ do
13: ξj←

∑

l∈L̃
λl

∑

h∈Cl∩(S∪{j}) whvlh/(
∑

k∈Cl∩(S∪{j}) vlk + vl0)
14: for i = 1 to m do {define x(S ∪{j})}
15: xj

i ←maxh∈S∪{j} aih

16: end for
17: ζj←∆V T xj

18: end for
19: j∗← argmaxj∈S̃(ξj − ζj)

20: if reduced profit of (t, xj∗ , S ∪{j∗}) > reduced profit of (t, x,S) then
21: Set S = S ∪{j∗}, S̃ = S̃ \ {j∗}, x← xj∗

22: end if
23: until (S,x) is not changed
24: return (S,x) which identifies the new column

4.2. Approaches for TISA
The linear program (TISA) arising from the time- and inventory-dependent approximation has
likewise many columns but relatively few constraints. We need to solve the following problem to
obtain the variable Yt,x,S with maximum reduced profit:

max
t,x,S⊆N(x)

[

λ
∑

j∈S

Pj(S)(fj −
m∑

i=1

aijVt+1,i,xi
)−

m∑

i=1

xi∑

h=1

(Vt,i,h−Vt+1,i,h) + θt+1− θt

]

. (22)

We briefly present a mixed integer linear programming approach adapted to case of MNL choice
model with overlapping consideration sets. Since this problem is of similar structure like the pre-
vious one for TSA, it follows that it is also NP-hard. We develop a polynomial time heuristic in
the second part of this section.

Mixed Integer Linear Programming approach for TISA. Parallel to our course of action
for the affine approximation, we substitute the MNL choice probabilities into the reduced profit
equation (22) and obtain the following problem:

max
x,u

L∑

l=1

∑

j∈Cl

λl

vljuj
∑

k∈Cl
vlkuk + vl0

wx,j −
m∑

i=1

xi∑

h=1

(Vt,i,h−Vt+1,i,h)− θt + θt+1

xi ≥ aijuj, ∀ j ∈N,∀ i : aij > 0,
xi ∈ {0, . . . , ci}, ∀ i.

Note that the product worth wx,j := fj −
∑

i
aijVt+1,i,xi

now also depends on the currently avail-
able capacity x which makes the problem more complicated. However, similar manipulations as
described in Meissner and Strauss (2009) can be used to reformulate the problem by introducing
the variables

yl :=
1

∑

h∈Cl
vlhuh + vl0

and zlj := ujyl,

http://www.meiss.com/
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with corresponding constraints as in the linear program for TSA. We eventually obtain the following
linear program, which is equivalent to solving the reduced profit maximization (22):

max
x,y,z,ν,u

∑

l

∑

j∈Cl

∑

i

(−λlvljaij)

[

Vt+1,i,1ν
1,i
lj +

ci∑

k=2

(Vt+1,i,k−Vt+1,i,k−1)ν
ki
lj

]

+

+
∑

l

∑

j∈Cl

(λlvljfj)zlj +
∑

i

ci∑

k=1

(Vt+1,i,k−Vt,i,k)x
ki− θt + θt+1

∑

j∈Cl

vljzlj + vl0yl = 1, ∀ l,

yl ≥ 0, ∀ l,
ci∑

k=1

xki ≥ aijuj, ∀ i, j ∈N : aij > 0,

xk−1,i ≥ xki, ∀ i, k ∈ {2, . . . , ci}, (23)
xki ∈ {0,1}, ∀ i, k ∈ {1, . . . , ci}, (24)
νki

lj ≤ xki, ∀ l, j ∈Cl, k, i, (25)
νki

lj ≤ zlj , ∀ l, j ∈Cl, k, i, (26)
νki

lj ≥ zlj − (1−xki), ∀ l, j ∈Cl, k, i, (27)
νki

lj ≥ 0, ∀ l, j ∈Cl, k, i, (28)
uj ∈ {0,1}, ∀ j ∈N, (29)
zlj ≥ 0, ∀ l,∀ j ∈Cl, (30)
zlj ≤ yl, ∀ l,∀ j ∈Cl, (31)
M(1−uj) + zlj ≥ yl, ∀ l,∀ j ∈Cl, (32)
Muj ≥ zlj , ∀ l,∀ j ∈Cl. (33)

In order to linearize the objective with respect to x, we represent xi by
∑

k
xki and impose the

constraints (23–24) to ensure that xki = 1 for k = 1, . . . , xi, and xki = 0 otherwise. The variable νki
lj

replaces zljx
ki, and the constraints (25–28) ensure that νki

lj = zlj if xki = 1 and νki
lj = 0 otherwise.

The constraints (29–33) represent zlj ∈ {0, yl}. The constant M can be chosen M := maxl 1/vl0

since yl ≤ 1/vl0.

Greedy Heuristic for TISA. In order to avoid having to solve the above presented mixed
integer linear problem, we propose Algorithm 2 to attempt to solve the column pricing problems
(22) for each fixed time period t. Additional complexity is added by the fact that the objective
now also depends on the respective inventory levels of all resources. In particular, the first term is
now also dependent on x, making the two expressions inseparable. Overall worst-case complexity
of Algorithm 2 is O(n2(mL+

∑

i
ci)). Usually a good solution is found in much less operations so

that considerable time can be saved as shown in the numerical experiments.
The underlying idea of this heuristic is, similarly to the previous one, to find a column—

characterized by (t, x,S)—for a fixed time period t by consecutively adding products to an initially
empty set in a greedy fashion, and to construct the best x for any product that is under consid-
eration of being added. That is, we start with S = ∅, add a product j ∈ N and compute the xj

that maximizes the reduced profit π(t, xj,{j}) by exploiting that the reduced profit function is
separable in the resources i. This is done for each product j ∈N , so that we can choose the new
product j∗ which shall enter the set S to be the one with the largest reduced profit. Subsequently,
for a given set S we look for the next—still unassigned—product j /∈ S which would contribute the
most to the reduced profit, along with the best x vector which is computed for each candidate in
lines 21 and 24 of Algorithm 2.
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Algorithm 2 Greedy heuristic for TISA column pricing problem at time t

1: Set S←∅, S̃←N
2: ∆Vi,k← Vt,i,k−Vt+1,i,k for all resources i, for all k = 1, . . . , ci

3: for all j ∈ S̃ do
4: ξj←

∑L

l=1 λlvlj/(vlj + vl0)
5: for i = 1 to m do {Compute optimal vector x for any given j:}
6: if i∈Aj then
7: xj

i ← argmaxxiaij∈{aij ,...,ci}
(−ξjaijVt+1,i,xi

−
∑xi

k=1 ∆Vi,k)
8: else
9: xj

i ← argmaxxi∈{0,1,...,ci}
(−

∑xi

k=1 ∆Vi,k)
10: end if
11: end for

12: ζj← ξj(fj −
∑

i
aijVt+1,i,x

j
i

)−
∑

i

∑x
j
i

k=1 ∆Vi,k

13: end for
14: Define j∗← argmaxj∈S̃ ζj

15: Set S = {j∗}, S̃ = S̃ \ {j∗}, x← xj∗

16: repeat
17: for all j ∈ S̃ do {Find best x if we offer S ∪{j} with some fixed j ∈ S̃}
18: for all resources i which are required to provide products S ∪{j} do
19: ξj

i ←
∑L

l=1 λl

∑

h∈Cl∩(S∪{j}) vlhaih/(
∑

k∈Cl∩(S∪{j}) vlk + vl0)
20: αi←maxk∈S∪{j} aik

21: xj
i ← argmaxxi∈{αi,...,ci}

(−ξj
i Vt+1,i,xi

−
∑xi

k=1 ∆Vi,k)
22: end for
23: for all other resources i do
24: xj

i ← argmaxxi∈{0,1,...,ci}
(−

∑xi

k=1 ∆Vi,k)
25: end for
26: Compute π(t, xj, S ∪{j}) := reduced profit of column associated with (t, xj, S ∪{j})
27: end for
28: Set j∗← argmaxj∈S̃ π(t, xj, S ∪{j})
29: if π(t, xj∗ , S ∪{j∗}) > π(t, x,S) then
30: Set S← S ∪{j∗}, S̃← S̃ \ {j∗}, x← xj∗

31: end if
32: until (x,S) are not changed
33: return (x,S) which identifies the new column (t is fixed)

5. Policies
Policies can be obtained by using the dual values from the linear programming solutions directly,
or by using some kind of network decomposition. Essentially, dynamic programming decomposi-
tion schemes reduce the network problem to a set of leg-level problems which can be solved via
backward dynamic programming due to their one-dimensionality. The key to this approach is the
approximation of opportunity cost, or as it can equivalently be seen, the estimation of a revenue
share for a particular flight leg. Since the dual values from the LP solutions provide us with infor-
mation on marginal value of capacity, we can use this to formulate the single-leg problems. One
feature of DP decomposition is that one obtains both time- as well as capacity-dependent bid
prices. However, their quality is based upon the quality of the dual values which serve as an input
to the DP decomposition procedure, so we expect better results with more accurate inputs.

The actual control policies are derived from the optimal policy prescribed by the dynamic pro-
gramming formulation (2). Supposing that we knew the true value function vt(x), we would offer
the following set S∗ in time period t with remaining available network capacity x:

S∗ = argmax
S⊆N(x)

∑

j∈S

λPj(S)

[

fj − (vt+1(x)− vt+1(x−Aj))

]

. (34)
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Although we do not know the true value function, we do have knowledge about an approximation
of it. Namely, one possibility is to directly use the result from the linear programs developed above
to approximate the opportunity cost vt+1(x)−vt+1(x−Aj), and another to refine it by conducting a
dynamic programming procedure in between. In this section, we present both techniques applied to
the approaches TSA and TISA. Furthermore, we briefly review the dynamic programming approach
for CDLP of Miranda Bront et al. (2009) which we use as a benchmark.

5.1. Policies based on TSA
For the case of using the MNL choice model with disjoint consideration sets, Zhang and Adelman
(2009) proposed both a dynamic programming decomposition method as well as a policy based
on direct usage of the dual values obtained from solving a linear program. The basic approach
remains the same in the context of overlapping consideration sets, however, the resulting problem
that needs to be solved in any of the two methods in order to determine which set of products shall
be offered at a given time period and for given remaining capacity is more difficult since it shares
the same structure with the column generation subproblem. While in the disjoint consideration
set case it is possible to solve the arising problem efficiently by a ranking procedure, we now need
to resort to similar means as described for the column pricing problem: Either we transform the
problem to a linear mixed integer program, or we use an adapted version of Algorithm 1.

5.1.1. Using Dual Values Directly. Given the dual solution V ∗ of (TSA), Zhang and
Adelman (2009) approximated the opportunity cost by

vt(x)− vt(x−Aj)≈
∑

i

aijV
∗

t,i.

They substitute this into the optimal policy to obtain a heuristic indicating which set S to offer
at time t and given remaining capacity x:

S =argmax
u∈{0,1}n

L∑

l=1

∑

j∈Cl

λl

vljuj
∑

j∈Cl
vljuj + vl0

(fj −
∑

i

aijVt,i) (35)

aijuj ≤ xi ∀ i, j ∈N.

The ranking procedure employed by Zhang and Adelman (2009) (originally proposed by Gallego
and Phillips (2004)) does not work if the consideration sets overlap, thus we need to solve this
problem either by transforming it into a linear mixed integer program like for the column generation
subproblem, or we employ Algorithm 1 with slight amendments, that is initially we would remove
all products j for which xi < aij , and set ∆Vi = 0.

5.1.2. Dynamic Programming Decomposition. We can use the marginal capacity value
estimates from (TSA) to decompose the network problem into a collection of m singe-resource
dynamic programmes. Zhang and Adelman (2009) used the following approximation of the value
function:

vt(x)≈ vi
t(xi) +

∑

k 6=i

V ∗
t,kxk ∀t, x.

When we substitute this into the optimal dynamic program (2), we obtain for each resource i a
one-dimensional dynamic program:

vi
t(xi) = max

x
−i,S⊆N(x)

∑

j∈S

λPj(S)

(

fj − vi
t+1(xi) + vi

t+1(xi− aij)−
∑

k 6=i

V ∗
t+1,kakj

)

−
∑

k 6=i

(V ∗
t,k−V ∗

t+1,k)xk + vi
t+1(xi). (36)
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The term x−i represents optimization over inventory vectors with the ith component removed
(since it is fixed at xi). On the boundary we define vi

τ+1(xi) = 0 for all resources i and all inventory
levels xi since the inventory is assumed to become worthless at the end of the booking horizon.
We can interpret equation (36) as the maximization of expected adjusted revenue. The adjustment
consists of two parts: The opportunity cost (vi

t+1(xi)−vi
t+1(xi−aij)) incurred by using aij units of

resource i and the opportunity cost V ∗
t+1,kakj incurred by using akj units of resource k. The terms

(V ∗
t,k − V ∗

t+1,k)xk can be seen as the value deterioration of inventory of resource k with respect to
time. The maximization is again of the same structure as the column pricing problem, therefore
both the mixed integer linear program as well as the Algorithm 1 can be adapted to provide a
(potentially sub-optimal) solution to (36).

Once we have solved for vi
t(xi) for all t, i, xi, a policy is given by

max
S⊆N(x)

∑

j∈S

λPj(S)

[

fj −
m∑

i=1

aij(v
i
t+1(xi)− vi

t+1(xi− 1))

]

. (37)

5.2. Policies based on TISA
5.2.1. Using Dual Values Directly Denote the optimal dual values to the capacity con-

straints (5) and (6) of (TISA) by V ∗. We can use V ∗ directly to obtain the policy below, which
needs to be solved in each time period for a given state x:

max
S⊆N(x)

∑

j∈S

λPj(S)

[

fj −
m∑

i=1

aijV
∗

t+1,i,xi

]

. (38)

5.2.2. Dynamic Programming Decomposition Let V ∗ be the optimal dual values asso-
ciated with the capacity constraints (5) and (6) of (TISA). Then we can approximate the value
function vt(x) in a similar manner as in the last section in order to obtain a set of resource-level
problems. More specifically, for each resource i we use the approximation

vt(x)≈ vi
t(xi) +

∑

k 6=i

xk∑

h=1

V ∗
t,k,h ∀t, x.

Plugging this into (EQ), we obtain for each resource i the following problem:

(LPi) min
vi
t(·)

vi
1(ci) +

∑

k 6=i

ck∑

h=1

V ∗
1,k,h

vi
t(xi) +

∑

k 6=i

xk∑

h=1

V ∗
t,k,h ≥ λ

∑

j∈S

Pj(S)

[

fj − (vi
t+1(xi)− vi

t+1(xi− aij)

+
∑

k 6=i

xk∑

h=xk−akj+1

V ∗
t+1,k,h)

]

+ vi
t+1(xi) +

∑

k 6=i

xk∑

h=1

V ∗
t+1,k,h ∀t, x,S ⊆N(x). (39)

The proposition below shows that the objective functions to the problems (LPi) constitute upper
bounds on the exact objective value vt(x) for each resource i. It is possible to refine bounds of TSA
using dynamic programming decomposition since we essentially would relax the problem in as far
as we allow the value function approximation to be non-linear. However, for TISA the dynamic
programming bound turns out to be identical to the one provided by linear program (TISA) which
provides evidence that DP decomposition will probably not improve our direct policies.

Proposition 2 (i) vi
t(xi) +

∑

k 6=i

∑xk

h=1 V ∗
t,k,h ≥ vt(x) ∀t, i, x.
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(ii) zCDLP ≥ zTSA ≥ zTISA = vi
1(ci) +

∑

k 6=i

∑ck

h=1 V ∗
1,k,h ≥ v1(c) ∀i.

Proof. For Part (i), we parallel a similar proof of Zhang and Adelman (2009) which is by
induction over time t. Fix a resource i ∈ {1, . . . ,m}. Note that the boundary conditions give us
vi

τ+1(x) = 0 for all x and V ∗
τ+1,k,h = 0 for all k,h. Thus for time period τ we have by conditions (39):

vi
τ (xi) +

∑

k 6=i

xk∑

h=1

V ∗
τ,k,h ≥ λ

∑

j∈S

Pj(S)fj ∀x,S ⊆N(x).

Since the inequality above holds for all S ⊆ N(x), it holds in particular for the offer set S̃ that
maximizes the right hand side. For S̃, the right hand side is then equal to vτ(x).

Next, assume the inequality holds for t + 1. Then conditions (39) together with the induction
assumption yield

vi
t(xi) +

∑

k 6=i

xk∑

h=1

V ∗
t,k,h ≥ λ

∑

j∈S

Pj(S)
[
fj + vi

t+1(xi− aij) +
∑

k 6=i

xk−akj∑

h=1

V ∗
t+1,k,h

]

+(vi
t+1(xi) +

∑

k 6=i

xk∑

h=1

V ∗
t+1,k,h)(1−λ

∑

j∈S

Pj(S))

≥ λ
∑

j∈S

Pj(S)(fj + vt+1(x−Aj)− vt+1(x)) + vt+1(x) ∀x,S ⊆N(x).

Comparison with the dynamic programming formulation (2) yields the desired result.
Part (ii): The first inequality has been shown by Zhang and Adelman (2009), the second by

Meissner and Strauss (2009). The last one follows from part (i) of this proposition. For the equality
we first show that the optimal solution V ∗ to the dual of (TISA), referred to as (D), yields a
feasible solution for (LPi) for all i with the same objective value. Setting vi

t(xi) := θt +
∑xi

h=1 V ∗
t,i,h

for all i, xi, t, we obtain such a solution where feasibility follows from feasibility of V ∗. To prove
equality it is sufficient to show for any i the existence of a feasible solution to (D) which has the
same objective as an optimal solution to (LPi). For any i, suppose vi

t(h) is an optimal solution to
(LPi). Define θt := 0 for all t, Vt,k,h := V ∗

t,k,h for all t, k 6= i, h and Vt,i,h := vi
t(h)− vi

t(h− 1) for all t,
h. This solution is feasible to (D) due to feasibility of vt(·) to (LPi) and has the same objective.

�

The systems (LPi) were introduced to obtain these upper bound results; however, they do not
provide a very effective way of actually solving the problem because the problems (LPi) have
both many constraints as well as many decision variables. Instead, we use a dynamic programming
decomposition approach:

v̂i
t(xi) = max

x
−i,S⊆N(x)

{
∑

j∈S

λPj(S)

(

fj − (v̂i
t+1(xi) +

∑

k 6=i

xk∑

h=1

V ∗
t+1,k,h− v̂i

t+1(xi− aij)

−
∑

k 6=i

xk−akj∑

h=1

V ∗
t+1,k,h)

)

+
∑

k 6=i

xk∑

h=1

(V ∗
t+1,k,h−V ∗

t,k,h)

}

+ v̂i
t+1(xi),

(40)

and v̂i
τ+1(xi) = 0 for all i, xi. The maximization (40) has very similar structure like the column

pricing problem (22) for TISA and therefore can be solved by a linear mixed integer program or
heuristic in a similar manner.

Proposition 3 vi
1(ci) = v̂i

1(ci) ∀i

http://www.meiss.com/
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Proof. Fix a resource i ∈ {1, . . . ,m}. By induction, we first show vi
t(xi)≥ v̂i

t(xi). The boundary
conditions give vi

τ+1(xi) = v̂i
τ+1(xi) = 0 for all xi, so the equality holds in particular for ci.

Assume now that the inequality holds for t+1. Then constraints of (LPi) give:

vi
t(xi) +

∑

k 6=i

xk∑

h=1

V ∗
t,k,h ≥ λ

∑

j∈S

Pj(S)

(

fj + vi
t+1(xi− aij) +

∑

k 6=i

xk−akj∑

h=1

V ∗
t+1,k,h

)

+(vi
t+1(xi) +

∑

k 6=i

xk∑

h=1

V ∗
t+1,k,h)(1−λ

∑

j∈S

Pj(S)) ∀x,S ⊆N(x).

Since this holds for all x,S ⊆N(x), together with the induction assumption we have vi
t(xi)≥ v̂i

t(xi)
as postulated.
In order to show vi

t(xi)≤ v̂i
t(xi), note that the DP recursion (40) is such that v̂i

t(·) is feasible to
the constraints of (LPi), and thus the optimal solution vi

t(·) to the minimization problem (LPi)
satisfies vi

t(xi)≤ v̂i
t(xi) for all t, xi.

�

After computing v̂i
t(·) for all resources i we approximate the network value function by

vt(x)≈
∑

i

v̂i
t(xi).

Plugging this approximation into the original dynamic programming formulation (2) yields the the
maximization that we would need to solve in a given time period for a given state x:

max
S⊆N(x)

λ
∑

j∈S

Pj(S)

(

fj −
∑

i

(v̂i
t+1(xi)− v̂i

t+1(xi− aij))

)

.

Again, this problem can be solved with the mixed integer linear program or heuristic as elaborated
above. We do not report numerical results for the DP decomposition for TISA since it requires
to solve the associated LP close to optimality—which is expensive given the tailing off behavior
of column generation—and since the policies performed similar or worse like the direct policies.
This behavior is intuitive because DP decomposition essentially introduces time- and inventory-
dependence. However, the dual values arising in TISA have already this property and, furthermore,
the underlying LP can take network effects better into account.

5.3. Policies based on CDLP
For CDLP, we only consider the decomposition approach as used by Miranda Bront et al. (2009)
because their results show a better performance for this approach as opposed to using dual values
directly, even if re-solving is employed. Solving the CDLP provides us with the optimal dual values
of the capacity constraints, denoted by π∗. The network is again being decomposed by the resource
and the value function is approximated by vt(x)≈ vi

t(xi)+
∑

k 6=i
π∗

kxk, where vi
t(xi) is computed by

the single resource dynamic program

vi
t(xi) = max

S⊆N

∑

j∈S

λPj(S)

[

fj − (vi
t+1(xi)− vi

t+1(xi− 1)−π∗
i )1{i∈Aj}−

∑

k∈Aj

π∗
k

]

+ vi
t+1(xi),

with vi
τ+1(xi) = 0 for all xi and vi

t(0) = 0 for all t on the boundary. Miranda Bront et al. (2009)
proposed a linear mixed integer program to solve the dynamic programming subproblem and,
alternatively, a heuristic.

Another approach would be full enumeration which is clearly not possible for large num-
ber of products. However, Talluri and van Ryzin (2004a) showed that any optimal solution to
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R(S)

Q(S)

Sr

Sl

Figure 1 Identification of efficient frontier using a two-sided approach.

Algorithm 3 Two-sided marginal revenue procedure

1: Set Sl←∅, Sr← argmaxS∈P(N) R(S)
2: E←{Sl, Sr} (efficient sets)
3: loop
4: Sl← argmaxS∈S(Sl,Sr)

R(S)−R(Sl)

Q(S)−Q(Sl)

5: if Sl = Sr then
6: break
7: end if
8: E←E ∪{Sl}
9: Sr← argminS∈S(Sl,Sr)

R(Sr)−R(S)

Q(Sr)−Q(S)

10: if Sr = Sl then
11: break
12: end if
13: E←E ∪{Sr}
14: end loop

this type of single resource dynamic program is efficient in the following sense: Let us denote
the expected displacement-adjusted revenue by R(S) :=

∑

j∈S
λPj(S)(fj −

∑

k∈Aj ,k 6=i
π∗

k), and the

expected resource consumption by Q(S) :=
∑

j∈S
λPj(S)aij . Then, we define a set T to be called

inefficient if there exists a set of convex weights α(S),
∑

S
α(S) = 1, α(S) ≥ 0 for all S, such

that R(T ) <
∑

S
α(S)R(S) and Q(T ) ≥

∑

S
α(S)Q(S). Otherwise, T is called efficient. A useful

characterization of efficient sets is shown in the following proposition:

Proposition 4 (Talluri and van Ryzin (2004a))A set T is efficient if and only if it maximizes
maxS

{
R(S)−Q(S)µ

}
for some value µ≥ 0.

Therefore, we can restrict the search for an optimal solution to only efficient sets, given that
there is some efficient means to identify them. However, the problem of identifying efficient sets
is computationally intensive. We propose a modification of the so-called “largest marginal revenue
procedure“ presented in Talluri and van Ryzin (2004a) that identifies efficient sets for general choice
models. This method is based on the observation that once an efficient set Sk is given, the next one
can be identified as the set with highest marginal revenue ratio (R(S)−R(Sk))/(Q(S)−Q(Sk))
among all sets S with R(S)≥R(Sk) and Q(S)≥Q(Sk). The empty set is always efficient and thus
provides a starting point for this approach.

Our essential idea is to recognize that the set Sr with the highest expected revenue R(Sr) will
always be efficient (set µ = 0 in Proposition 4), as well as the empty set, denoted by Sl. We can
restrict the search to sets in

S(Sl, Sr) := {S ∈P(N) : R(S)∈ [R(Sl),R(Sr)],Q(S)∈ [Q(Sl),Q(Sr)]},
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Leg 1 (morning) Leg 3 (morning)

Leg 2 (noon) Leg 5 (afternoon)

Leg 4 (noon)

Figure 2 Hub & Spoke network example.

where P(N) denotes the power set of N , and identify the next efficient set by maximizing the slope
of a line through (Q(Sl),R(Sl)) and a point out of S(Sl, Sr), or by similar minimization if coming
from the right-hand side. Algorithm 3 implements this idea, where we alternate between coming
from the left and right side to find the next facet of the efficient frontier. Figure 1 illustrates the
process. The advantage of the two sided approach is to have further bounds that can be used to
restrict the search space S(Sl, Sr) better. Of course, the number of subsets becomes very quickly
intractable, therefore one might consider heuristical approach such as identifying efficient sets not
over the whole power set P(N ) but rather, for example, over sets used in former booking processes
enriched with some randomly sampled ones. The strength of the concept of efficient sets is that
for some choice models these sets correspond to those in a simple nested fare order, however, in
the context of overlapping consideration sets this does unfortunately not hold any more in general
as exemplified by Miranda Bront et al. (2009). Still, it might prove advantageous since we need to
solve the dynamic programming subproblem over all time periods while the efficient sets always
remain the same, only the cost value changes. Therefore, once the efficient sets are identified, we
could solve all these subproblems quickly.

When all resource-level value functions vi
t(xi) have been computed, we solve the following prob-

lem at each time period for the given state x:

max
S⊆N(x)

∑

j∈S

λPj(S)

[

fj −
m∑

i=1

(vi
t+1(xi)− vi

t+1(xi− 1))aij

]

. (41)

6. Numerical Experiments
In this section, we investigate numerically how the performance of the time-sensitive approach
(TSA) and time- and inventory-sensitive approach (TISA) compare with the linear programming
approach of Miranda Bront et al. (2009), in particular for different degrees of market segmentation
weakness, where performance refers to upper bound quality, simulated revenue results and time
consumption. The purpose is to obtain insights into which method might be the most beneficial in
situations where products fences are broken. Furthermore, we investigate the performance of the
proposed heuristics in terms of average time reduction and achieved solution quality.

6.1. Experiment design
A hub and spoke network example is depicted in Figure 2 and consists of two parallel flights from
location A to H, and further three parallel flights from H to B. The initial capacity vector is defined
by c := [3,2,2,2,2]T . On each itinerary we again have two fare classes, High and Low. The network
example allows us to have short-haul and long-haul products compete for the same resources, in
addition to customers who can decide whether to fly early or late on parallel flights and, depending
on the level of overlap that we allow in the model setup, whether to buy up or down. The products
are defined in Table 1.
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We wish to explore the impact of weak segmentation on the performance of the various policies,
hence we consider three scenarios of consideration sets in Table 2 corresponding to high, medium
and low overlap between the consideration sets. While we have in all cases the same number of
segments, we allow the price insensitive segments to consider a from scenario to scenario growing
number of lower fares, reflecting an increasingly weak segmented market.

Furthermore, we vary the expected capacity tightness ρ by scaling the vector of arrival rates λ.
This is measured by

ρ :=

∑τ

t=1

∑L

l=1 λl

∑

j∈S∗

∑m

i=1 aijPj(S
∗)

∑m

i=1 ci

,

where the set S∗ is the optimal offer set given ample capacity, that is

S∗ := argmax
S⊆N

∑

j∈S

fjPj(S).

Again we consider three scenarios, namely high, medium and low ρ. We are interested in network
configurations with ρ ≥ 1, because otherwise the problem has on average non-binding capacity
constraints and therefore the optimal solution is trivial, namely to offer the set S∗.

Finally, we scale capacity vector and time horizon up to obtain insights into policy performance
for larger systems but still solve small problems as compared to the practice since we intend to
demonstrate the maximum potential of the proposed policies which, however, implies to carry out
expensive computations for TISA.

In order to find the dual values needed for the policies and the dynamic programming decom-
position, the CDLP is always solved until optimality, where we employ the heuristic proposed by
Miranda Bront et al. (2009) to solve the column generation subproblem. If the heuristic cannot find
any further column with positive reduced profit, the mixed integer formulation is used. Similarly
we use Algorithm 1 for the column generation subproblem of TSA and Algorithm 2 for TISA. As
a stopping criterion for the approaches TSA and TISA we compute the sum over all time periods
of respectively maximal reduced profits (so to speak the estimated potential of improvement), and
stop generating columns if this value is within 1% and 5%, respectively, of the current optimal
objective value plus the improvement potential. For all approaches, we retain all columns that have
been generated in the master problem.

All simulations are run until the relative percentage error of the mean is less than 0.5% with 95%
confidence, which corresponds to sample sizes of about 4000 to 6000 depending on the network
configuration. The empirical average network load factor is measured as the mean of the sum of
sold capacity units divided by the network capacity. This indicates how restrictive a policy is on
average, though a higher load factor in general does not need to imply higher revenues, of course.
In every simulated time step, a new offer set needs to be computed. All simulations use the mixed
integer programming approach to solve the problem (34) for approximation of the value function
corresponding to the respective policy used.

The performance of Algorithms 1 and 2 is measured in several ways: Firstly, we measure the
total CPU time that it takes to solve the corresponding master problem with using the heuristic
for the column generation subproblem, and only resorting to the mixed integer formulation once
the heuristic does not find a column with positive reduced profit any more. This time is compared
to the one that it takes to solve the master problem using only the mixed integer formulation for
the subproblems. Secondly, we measure the CPU time for each individual run of the heuristic and
compare this to the time that the mixed integer program takes to solve the same subproblem. We
compute the ratio of these times and accept the column found by the heuristic as long as it has
positive reduced cost. Once the solution to the master problem has been found, we compute the
average of all the time ratios of heuristic versus mixed integer problem. In order to quantify the
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Table 1 Product definitions for HS.

Product Resources OD Class Fare

1 1 A → H L 400
2 1 ” H 800
3 2 ” L 300
4 2 ” H 600
5 3 H → B L 400
6 3 ” H 800
7 4 ” L 300
8 4 ” H 600
9 5 ” L 400
10 5 ” H 800
11 1,4 A → B L 500
12 1,4 ” H 1000
13 1,5 ” L 450
14 1,5 ” H 900
15 2,5 ” L 400
16 2,5 ” H 800

“Resources” indicates the resources which
the respective product utilizes.

Table 2 Segments and consideration sets for HS.

# Segment Consideration set Pref. vector λl (%) vl0

1 A → H, price insensitive, early preferred {{{2,4},1},3} [[[10,5],10],7] 7 1
2 A → H, price insensitive, late preferred {{{2,4},3},1} [[[5,10],10],7] 5 1
3 A → H, price sensitive {{{1,3}}} [[[10,8]]] 15 5
4 H → B, price insensitive, early preferred {{{6,8,10}5}7,9} [[[10,5,1],10],7,3] 7 1
5 H → B, price insensitive, late preferred {{{6,8,10}9}7,5} [[[1,5,10],10],7,3] 5 1
6 H → B, price sensitive {{{5,7,9}}} [[[5,10,5]]] 15 5
7 A → B, price insensitive, early preferred {{{12,14},11},13} [[[10,5],10],7] 7 1
8 A → B, price insensitive, late preferred {{{16},15},11,12} [[[10],10],7,5] 5 1
9 A → B, price sensitive {{{11,13,15}}} [[[5,8,10]]] 15 5

The column “Consideration Set” lists the products that any segment considers for three different
scenarios with different degree of overlap (low, medium, high). For example, {{{2,4},1},3} means
C1 = {2,4} in the low, C1 = {2,4,1} in the medium and C1 = {2,4,1,3} in the high overlap case.

level of quality achieved in the solution of the heuristic, we compute in a similar fashion the ratio
of reduced profit of the column found by the heuristic to the maximum reduced profit determined
by the mixed integer program. Again, we report the average over all column generation iterations.

Finally, we measure the proportions on the total CPU time for solving the master problem that
are spent on running the heuristic, running the mixed integer problem in the case that the heuristic
failed, and for solving the master problems. This identifies the tasks where most time was spent
on and where future work would be most effective in speeding up the solution.

The tested policies are the following:
• D-CDLP: The decomposition policy (41) based on CDLP; it will serve us as a benchmark.
• TSA: The policy (35) based on directly using the dual values of (TSA) to approximate oppor-

tunity cost.
• D-TSA: The decomposition policy (37) based on the affine approximation.
• TISA: The policy (38) based on directly using the dual values of (TISA).

6.2. Upper bounds and policy performance
We report upper bounds on the optimal expected revenue v1(c) in Table 3. It is known that
zCDLP ≥ zTSA ≥ zTISA and that the decomposition bound of CDLP and TSA is tighter than zCDLP

and zTSA, respectively. Comparison of the bounds for TSA and D-CDLP indicate that neither
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bound dominates the other. In contrast, D-TSA seems to dominate D-CDLP, and in turn TISA
seems to dominate D-TSA. Both observations intuitively make sense since the input of the DP
decomposition contains increasingly more information. TISA provides the strongest bound with
improvements between 2% and 10% over D-CDLP. The improvements in the bound tend to become
smaller as capacity and time horizon scale up, which can be attributed to the asymptotic optimality
of the CDLP. In most cases, the differences are largest for the medium overlap scenario and lie
there in the range of 0–2% for TSA, 0–5% for D-TSA and 3–7% for TISA. With respect to changes
in the capacity tightness the bounds do not vary much, though there seems to be slightly tighter
bounds for TSA, D-TSA and TISA for medium capacity tightness.

As for policy performance, in Table 4 we report the sample means of simulations for the different
discussed policies. TSA is in 4 out of 27 cases weaker than D-CDLP, but only in two cases by more
than one percent. D-TSA improves D-CDLP in all cases, however, surprisingly it does not always
improve policy performance compared to TSA. The reason for this behaviour is most likely to be
found in the fact that we solved (TSA) only approximately, so that the input for the decomposition
procedure is somewhat erratic. It is an interesting observation that DP decomposition is not very
robust with respect to disturbed input values and can actually result in poorer policy performance
if the input is not the exact dual solution of the underlying linear program.

TISA surpasses the CDLP-based decomposition policy D-CDLP in every scenario by 2–23%.
For better illustration of TISA’s results, we plotted the average revenue improvements of Table
4 in Figure 3. With regard to tightness of capacity, best performance is shown for the medium
case of α = 1 which coincides with intuition since revenue management decisions will be most
critical if there is neither so little demand that capacity constraints can be ignored, nor so much
demand that high value demand can fill up the plane itself. Though the scalings of λ do not yield
demand scenarios that extreme, yet the tendency is reflected in the results. The improvements
become smaller as capacity and time horizon are scaled up, but are still between 4-6% in the
medium capacity tightness case. An important observation is related to performance depending
on the degree of overlap. Of course, average revenues decrease as overlap increases since formerly
price-insensitive segments consider more buy-down opportunities. More interesting is the relative
performance of the approaches under investigation: In particular for TISA the largest improvements
usually occur under high overlap, most pronounced under medium capacity tightness. This supports
our claim that TISA is particularly advantageous in weakly segmented markets due to its refined
opportunity cost estimates. For practical application, however, we need to give up some accuracy in
favor of reduced run time. To that end, note that results for policies based on general aggregation
of inventory can be expected to yield results between the benchmarks provided by TSA and TISA.

6.3. Performance of the heuristics
We investigate the performance of Algorithm 1 and 2 in terms of quality and time consumption.
For the test problems we use medium capacity tightness and high overlap where we observed the
best revenue improvements.

In Table 5 we report the number of columns that were generated to solve (CDLP) to optimality
and (TSA)/(TISA) both with the 5% stopping criterion where we always first used the heuristic
to find a new column and MIP only if the heuristic could not find one with positive reduced profit.
The number of variables and constraints in (CDLP) does not depend on time or capacity, and
accordingly the number of generated columns stays constant across the considered test problems. As
expected, for TISA this number increases quickly underlining the need for aggregation techniques
for large problems. For both TSA and TISA almost all columns are found by the heuristic.

The quality of the heuristics was assessed by running both MIP and heuristic for a given sub-
problem and subsequently recording the ratio of reduced profit found by the heuristic divided by
reduced profit of the column identified by MIP. The average of these ratios over all subproblems
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Figure 3 Policy performance.

Table 3 Upper bounds

α (τ , c) Overlap CDLP D-CDLP TSA TISA D-TSA D-CDLP/TSA D-CDLP/D-TSA D-CDLP/TISA

0.9 (20, 3) Low 5927 5458 5419 5176 5275 1.01 1.03 1.05
0.9 (20, 3) Medium 5629 5227 5162 4945 5034 1.01 1.04 1.06
0.9 (20, 3) High 5498 5078 5104 4912 4943 1.00 1.03 1.03
0.9 (40, 6) Low 11854 11336 11340 10907 11176 1.00 1.01 1.04
0.9 (40, 6) Medium 11259 10850 10822 10416 10640 1.00 1.02 1.04
0.9 (40, 6) High 10996 10545 10610 10281 10439 0.99 1.01 1.03
0.9 (80, 12) Low 23709 23143 23241 22505 23114 1.00 1.00 1.03
0.9 (80, 12) Medium 22518 22112 22069 21497 22006 1.00 1.00 1.03
0.9 (80, 12) High 21992 21518 21566 21139 21471 1.00 1.00 1.02

1.0 (20, 3) Low 6175 5768 5660 5453 5543 1.02 1.04 1.06
1.0 (20, 3) Medium 6008 5576 5453 5219 5290 1.02 1.05 1.07
1.0 (20, 3) High 5882 5428 5427 5224 5277 1.00 1.03 1.04
1.0 (40, 6) Low 12350 11889 11816 11450 11688 1.01 1.02 1.04
1.0 (40, 6) Medium 12016 11522 11451 10999 11269 1.01 1.02 1.05
1.0 (40, 6) High 11764 11271 11333 10945 11118 0.99 1.01 1.03
1.0 (80, 12) Low 24700 24190 24164 23603 24125 1.00 1.00 1.02
1.0 (80, 12) Medium 24031 23478 23414 22784 23349 1.00 1.01 1.03
1.0 (80, 12) High 23527 23005 23074 22569 22895 1.00 1.00 1.02

1.1 (20, 3) Low 6372 5971 5875 5667 5767 1.02 1.04 1.05
1.1 (20, 3) Medium 6273 5833 5713 5493 5583 1.02 1.04 1.06
1.1 (20, 3) High 6216 5724 5726 5216 5601 1.00 1.02 1.10
1.1 (40, 6) Low 12744 12289 12245 11881 12096 1.00 1.02 1.03
1.1 (40, 6) Medium 12546 12037 11978 11529 11795 1.00 1.02 1.04
1.1 (40, 6) High 12432 11868 11944 11575 11727 0.99 1.01 1.03
1.1 (80, 12) Low 25489 24983 24975 24421 24920 1.00 1.00 1.02
1.1 (80, 12) Medium 25092 24497 24507 23813 24281 1.00 1.01 1.03
1.1 (80, 12) High 24864 24224 24341 23823 24215 1.00 1.00 1.02

Tightness of capacities is controlled by scaling arrival rate λ with α.
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Table 4 Policy performance

α (τ , c) Overlap D-CDLP TSA TISA D-TSA TSA/D-CDLP D-TSA/D-CDLP TISA/D-CDLP

0.9 (20, c) Low 4077 4797 4854 4520 1.18 1.11 1.19
0.9 (20, c) Medium 3839 4571 4654 4291 1.19 1.12 1.21
0.9 (20, c) High 3839 4549 4595 4188 1.19 1.09 1.20
0.9 (40, 2c) Low 9625 10239 10438 9992 1.06 1.04 1.08
0.9 (40, 2c) Medium 9216 9626 9941 9516 1.04 1.03 1.08
0.9 (40, 2c) High 9003 9328 9767 9179 1.04 1.02 1.08
0.9 (80, 4c) Low 21073 21425 21867 21438 1.02 1.02 1.04
0.9 (80, 4c) Medium 20156 19190 20793 20324 0.95 1.01 1.03
0.9 (80, 4c) High 19419 19365 20326 19628 1.00 1.01 1.05

1.0 (20, c) Low 4594 5043 5129 4793 1.10 1.04 1.12
1.0 (20, c) Medium 4291 4827 4945 4577 1.12 1.07 1.15
1.0 (20, c) High 3986 4839 4916 4441 1.21 1.11 1.23
1.0 (40, 2c) Low 10414 10536 10910 10576 1.01 1.02 1.05
1.0 (40, 2c) Medium 9987 10092 10557 10159 1.01 1.02 1.06
1.0 (40, 2c) High 9452 10101 10490 9971 1.07 1.05 1.11
1.0 (80, 4c) Low 22385 21802 22904 22537 0.97 1.01 1.02
1.0 (80, 4c) Medium 21544 21257 22013 21710 0.99 1.01 1.02
1.0 (80, 4c) High 20495 21338 21801 21207 1.04 1.03 1.06

1.1 (20, c) Low 4777 5186 5386 4960 1.09 1.04 1.13
1.1 (20, c) Medium 4536 5098 5189 4743 1.12 1.05 1.14
1.1 (20, c) High 4390 5051 5134 4708 1.15 1.07 1.17
1.1 (40, 2c) Low 10707 10811 11429 10980 1.01 1.03 1.07
1.1 (40, 2c) Medium 10412 10636 11056 10615 1.02 1.02 1.06
1.1 (40, 2c) High 10287 10780 11020 10497 1.05 1.02 1.07
1.1 (80, 4c) Low 22828 23021 23789 23351 1.01 1.02 1.04
1.1 (80, 4c) Medium 22367 22490 23116 22633 1.01 1.01 1.03
1.1 (80, 4c) High 22325 22043 22986 22501 0.99 1.01 1.03

All simulations were run until the relative percentage error was less than 0.5% with 95% confidence. Tightness of
capacity is controlled via scaling arrival rate λ with α.

until the master problem was solved is reported in Table 6 and demonstrate how close we are on
average to the optimal solution of the subproblems.

Time savings are considerable in particular for TISA—in Table 7 average time ratios are reported
in a similar manner as for the quality ratios. Note that the mean for CDLP and TSA does not
change since the subproblem is defined for a fixed time step, so there is no dependence on the time
horizon. The drop to 34% for CDLP is most likely because the ratio consists of small numbers
and therefore is prone to disturbances. TISA exhibits a strong decrease to only 5% of the required
time by the MIP since the latter increases with the capacity vector. Although the time required
to identify a new column has been decreased, we potentially might offset these gains by having
considerably more columns to identify. In order to check whether this is the case we compared in
Table 8 and 9 the total CPU time that it took to solve the respective master problems. Furthermore,
we split up the total time into the required time for solving the master problems and subproblem via
MIP and heuristic respectively. The overall speed-up is about 50% for TSA over all test problems.
For TISA, the run time is also substantially reduced but not to the amount that the reduction per
subproblem would lead us to expect. The reason for this is that our column generation algorithm
never deletes any column, hence the master problem requires increasingly more time. While the
approach without heuristics required most of the run time to solve the subproblems, for the last
problem with heuristics more than 90% of total time are required to solve the master problem. In
this light, implementing more sophisticated column generation procedures that control the pool of
columns in conjunction with our proposed heuristics should yield good results and constitutes an
interesting area of future research.
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Table 5 Number of columns found by heuristic and MIP,
respectively

CDLP TSA TISA
α (τ, c) Overlap Heu MIP Heu MIP Heu MIP

1.0 (20, c) High 18 0 567 9 863 25
1.0 (40, 2c) High 18 0 996 4 2386 27
1.0 (80, 4c) High 18 0 1917 3 9599 103

Table 6 Average quality ratio over subproblems

CDLP TSA TISA
α (τ, c) Overlap Mean Stddev Mean Stddev Mean Stddev

1.0 (20, c) High 0.97 0.10 0.94 0.18 0.90 0.22
1.0 (40, 2c) High 0.97 0.10 0.98 0.10 0.93 0.18
1.0 (80, 4c) High 0.97 0.10 0.99 0.06 0.93 0.18

Quality is measured as the objective of the heuristic solution divided by
the optimal objective. Sample created by running both methods for every
column generation subproblem. Column Stddev reports standard deviation.

Table 7 Average time ratio over subproblems

CDLP TSA TISA
α (τ, c) Overlap Mean Stddev Mean Stddev Mean Stddev

1.0 (20, c) High 0.46 0.32 0.40 0.29 0.27 0.25
1.0 (40, 2c) High 0.45 0.20 0.43 0.26 0.11 0.11
1.0 (80, 4c) High 0.34 0.23 0.43 0.25 0.05 0.05

Time ratio is CPU time of running the heuristic divided by CPU time
required for the mixed integer program. Column Stddev denotes standard
deviation.

Table 8 Total run times to solve CDLP, TSA and TISA without heuristics

CDLP TSA TISA
(τ, c) Total Master MIP Total Master MIP Total Master MIP

(20, c) 1s 19% 81% 21s 3% 97% 9 min 1% 99%
(40, 2c) 1s 20% 80% 39s 5% 95% 118 min 4% 96%
(80, 4c) 1s 15% 85% 78s 8% 92% 1735 min 20% 80%

Master reports the CPU time overall used to solve the growing master problems
relative to the Total CPU time needed until the stopping criterion of column gen-
eration procedure is satisfied, MIP likewise for the overall time needed to solve the
column generation subproblems. Medium capacity tightness (α = 1.0), high overlap
scenario.

Table 9 Run times to solve CDLP, TSA and TISA using heuristics

CDLP-Heuristics TSA-Heuristics TISA-Heuristics

(τ, c) Total Master Heu MIP Total Master Heu MIP Total Master Heu MIP
(20,c) 1s 34% 58% 8% 12s 8% 83% 9% 2 min 5% 78% 16%
(40,2c) 1s 26% 65% 9% 20s 11% 88% 1% 9 min 37% 49% 14%
(80,4c) 1s 27% 61% 12% 42s 20% 80% 0% 626 min 91% 4% 5%

Master reports the CPU time overall used to solve the growing master problems relative to the
Total CPU time needed until the stopping criterion of column generation procedure is satisfied,
Heu likewise for the overall time needed to solve the column generation subproblems with heuristics
and MIP for the case that the heuristic failed. Medium capacity tightness (α = 1.0), high overlap
scenario.

7. Conclusion
In this work we extend the choice-based network revenue management approaches of Zhang and
Adelman (2009) and Meissner and Strauss (2009) to the multinomial logit (MNL) choice model
with overlapping consideration sets. The extension of the former work is referred to as TSA for time-
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sensitive approach, the latter as TISA for time- and inventory-sensitive approach. We use the MNL
choice model to describe weakly segmented markets where product fences cannot keep customer
segments fully separated. We solve large-scale linear programs with column generation to obtain
opportunity cost estimates that can be used subsequently to construct policies. In the presented
extensions, a major issue is the question of how to solve the column generation subproblems
efficiently since they are NP-hard. We propose polynomial-time heuristics and numerically analyze
their performance with respect to quality and time consumption. Based on the solution of the
linear program we construct policies either by using dynamic programming (DP) decomposition or
by using the solution of the linear program directly to estimate opportunity cost of product sales.
DP decomposition was found to be unable to further improve the disaggregated approach TISA.
Indeed, we prove that the upper bound resulting from DP decomposition is in fact the same as the
one resulting from solving the linear program for TISA directly which hints at no additional revenue
performance being achievable by this method. In our experiments, DP decomposition turned out
to be not very robust facing somewhat inaccurate input in the form of the approximate linear
program solution. This is a reason why the policies directly based on TSA performed in many cases
even better than the ones based on DP decomposition using TSA.

For practical implementation, the full-blown approach is computationally too expensive, how-
ever, using inventory aggregation as described in Meissner and Strauss (2009) we can trade off run
time against accuracy. Our results for TSA and TISA represent the two extremes for this aggre-
gation method, and accordingly revenue performance of any aggregated approach can be expected
to lie between these two benchmarks. The work gives therefore insight into how much revenue
improvement is possible by using any aggregated approach and, furthermore, it also provides heuris-
tics that can likewise be used to speed up existing methods of Zhang and Adelman (2009) and
Meissner and Strauss (2009) in the disjoint consideration set context. We find that TSA and TISA
exhibits good revenue results as compared to the current benchmark method of Miranda Bront
et al. (2009) based on dynamic programming decomposition, and that the improvements become
the more pronounced the more the consideration sets overlap, that is in particular for the case of
weak segmentation. An intuitive reason for this observation is that the refined opportunity cost
estimates of TISA have an increased impact on revenue performance the more segments overlap
since the decisions to be made become more difficult in this situation.
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