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Consider a firm that owns a fixed capacity of a resource that is consumed in the production or delivery of
multiple products. The firm strives to maximize its total expected revenues over a finite horizon, either

by choosing a dynamic pricing strategy for each product or, if prices are fixed, by selecting a dynamic rule
that controls the allocation of capacity to requests for the different products. This paper shows how these well-
studied revenue management problems can be reduced to a common formulation in which the firm controls
the aggregate rate at which all products jointly consume resource capacity, highlighting their common structure,
and in some cases leading to algorithmic simplifications through the reduction in the control dimension of
the associated optimization problems. In the context of their associated deterministic (fluid) formulations, this
reduction leads to a closed-form characterization of the optimal controls, and suggests several natural static and
dynamic pricing heuristics. These are analyzed asymptotically and through an extensive numerical study. In the
context of the former, we show that “resolving” the fluid heuristic achieves asymptotically optimal performance
under fluid scaling.
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1. Introduction
Consider a firm that owns a fixed capacity of a cer-
tain resource that is consumed in the process of pro-
ducing or offering multiple products or services, and
which must be consumed over a finite time horizon.
The firm’s problem is to maximize its total expected
revenues by selecting the appropriate dynamic con-
trols. We consider two well-studied variants of this
problem. In the first, the firm is assumed to be a
monopolist or to operate in a market with imper-
fect competition, and thus to have power to influ-
ence the demand for each product by varying its
price. In this setting, the firm’s problem is to choose
a dynamic pricing strategy for each of its products
to optimize expected revenues. In the second variant,
prices are assumed to be fixed either by the competi-
tion or through a higher-order optimization problem,
and the firm’s problem is now to choose a dynamic
capacity allocation rule that controls when to accept

new requests for each of these products. In the sequel,
these two problems are referred to as the “dynamic
pricing” and “capacity control” formulations, respec-
tively. Revenue management problems of that sort
gained interest in the late 1970s in the context of
the airline industry, and have since been successfully
introduced in a variety of other areas such as hotels,
cruise lines, rental cars, retail, etc.
This paper illustrates how these two problems can

be reduced to a common formulation, thus connect-
ing prior results that have appeared in the literature
under a unified framework, and explores some of
the consequences of this formulation. Specifically, we
show that the multiproduct dynamic pricing prob-
lem introduced by Gallego and van Ryzin (1997) and
the capacity control problem of Lee and Hersh (1993)
can be recast within this common framework, and
be treated as different instances of a single-product
pricing problem for appropriate concave revenue
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functions (Propositions 1 and 2). Broadly speaking,
this is done by decoupling the revenue maximization
problems in two parts: First, at each point in time the
firm selects an aggregate capacity consumption rate
from all products, and second, it computes the vector
of demand rates to maximize instantaneous revenues
subject to the constraint that all products jointly con-
sume capacity at the aforementioned rate. The latter is
akin to the basic microeconomics problem of resource
allocation subject to a budget constraint, and gives
rise to an appropriate aggregate revenue rate function
in each case. This common formulation recovers well-
known structural results regarding the monotonicity
properties of the value function and the associated
controls (see Proposition 3 and Corollary 2), which
were previously derived in the literature while study-
ing each of these problems in isolation; see, e.g.,
Gallego and van Ryzin (1994, 1997), Lee and Hersh
(1993), Lautenbacher and Stidham (1999), Zhao and
Zheng (2000), and the recent book by Talluri and van
Ryzin (2004b). It also facilitates the derivation of new
results, such as Corollary 1, that extend these proper-
ties to the setting of multiproduct pricing policies.
Extending this idea of demand aggregation in con-

sidering deterministic and continuous (fluid) approx-
imations of the underlying problems suggests a set
of simple pricing and capacity control heuristics for
the underlying problems. These stem from the fact
that this aggregated formulation leads to closed-
form solutions to the fluid model revenue maxi-
mization problems (see Proposition 4). This extends
the analysis of Gallego and van Ryzin (1997), which
offered only an implicit characterization of these poli-
cies in the multiproduct setting; see also Bitran and
Caldentey (2003) for a discussion of deterministic
multiproduct pricing problems. Based on the solution
of the fluid formulation, we propose three heuristics:
(i) a static pricing heuristic, (ii) a static pricing heuris-
tic applied in conjunction with an appropriate capac-
ity allocation policy, and (iii) a “resolving” heuristic
that reevaluates the fluid policy as a function of the
current state and time-to-go (which is derived by
expressing the fluid solution in feedback form). The
first of these heuristics was proposed by Gallego and
van Ryzin (1997), while policies that combine static
prices with capacity controls as in (ii) have been sug-
gested in other papers such as McGill and van Ryzin

(1999), Feng and Xiao (2004), and Lin et al. (2003).
Finally, the “resolving” heuristic (iii) is widely applied
in practice, but to the best of our knowledge has
not been analyzed theoretically thus far. The only
exception was the negative result of Cooper (2002),
which illustrated through an example that resolving
may in fact do worse than applying the static fluid
policy. Propositions 5–7 in §4.2 establishes that all
three heuristics achieve asymptotically optimal per-
formance under fluid scaling, i.e., in the spirit of Gal-
lego and van Ryzin (1997) and Cooper (2002). These
results show that the phenomenon demonstrated in
Cooper’s example does not persist in problems with
large capacity and demand, where, in fact, resolv-
ing achieves the asymptotically optimal performance.
Moreover, the numerical results of §5 illustrate that
the dynamic heuristics (ii) and (iii) tend to outperform
the static one.
In terms of qualitative insights, we find that the

translation of the capacity consumption rate to a set
of product-level controls that jointly maximize the
instantaneous revenue rate defines an efficient frontier
for the firm’s optimal pricing and capacity control
strategies. This captures in a tractable way the interac-
tions between products due to cross-elasticity effects
and the joint capacity constraint. The idea of an effi-
cient frontier has appeared in Talluri and van Ryzin
(2004a) in the context of a capacity control problem for
a model with customer choice among products, and
in Feng and Xiao (2000, 2004) while studying pricing
problems with a predetermined set of price points.
The remainder of the paper is structured as fol-

lows. This section concludes with some additional
bibliographic references. Section 2 describes the two
problem formulations. Section 3 demonstrates the
reduction of the dynamic programming formulations
to that of a single-product pricing problem, and
derives some of its structural properties. Section 4
studies the fluid formulations of these problems and
analyzes the asymptotic performance of the associ-
ated heuristics mentioned earlier. Section 4.3 outlines
how the same approach can be extended to a network
setting. Section 5 provides some numerical illustration
of our results and offers some concluding remarks.
The idea of demand aggregation appeared in Tal-

luri and van Ryzin (2004a) while analyzing a capac-
ity control problem for a system where customer
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behavior is captured through a discrete choice model,
while similar techniques have been exploited in
the past in the numerical solution of the dynamic
programs associated with revenue management prob-
lems. Similar ideas also arise in problems of rev-
enue management of multiproduct queueing sys-
tems; see Maglaras (2006) for a recent example.
The papers by Elmaghraby and Keskinocak (2003),
Bitran and Caldentey (2003), and McGill and van
Ryzin (1999), and the book by Talluri and van Ryzin
(2004b), provide comprehensive overviews of the
areas of dynamic pricing and revenue management.
The modelling framework adopted in this paper
closely matches that of Gallego and van Ryzin (1994,
1997). Additional references on the capacity con-
trol formulation are Brumelle and McGill (1993) and
Lautenbacher and Stidham (1999). Finally, a dynamic
pricing heuristic that is related to the one studied in
this paper was derived by Reiman (2002) as the solu-
tion to a “second-order” control problem that seeks
to minimize an appropriate measure of the devia-
tion from the inventory trajectory derived through
the deterministic model. Indeed, the single-product
policy proposed in Reiman (2002) is the same as the
one we derive here. The multiproduct formulation in
Reiman (2002) differs from ours, and therefore the
resulting pricing policies also differ.

2. Single Resource, Multiproduct
Model

This section formulates the multiproduct dynamic
pricing and capacity control problems studied by
Gallego and van Ryzin (1997) and Lee and Hersh
(1993), respectively, among others.

2.1.1. Dynamic Pricing Problem. Consider a firm
endowed with C units of capacity of a single resource
used in producing or offering multiple products or
services, indexed by i = 1� � � � �n. Each product i
request requires one unit of capacity. There is a finite
horizon T over which the resources must be used,
and capacity cannot be replenished up to that time.
The salvage value of remaining capacity at time T
is assumed to be zero. (A constant per-unit sal-
vage value would also result in formulations sim-
ilar to those developed below.) The firm is either
a monopolist or is assumed to operate in a mar-
ket with imperfect competition, and, therefore, has

power to influence the demand for each product by
varying its menu of prices. Let p�t
= �p1�t
� � � � � pn�t
�
denote the vector of prices at time t. The demand
process is assumed to be n-dimensional nonhomoge-
neous Poisson process with rate vector  determined
through a demand function �p�t

, where � � →�,
� ⊆ �n is the set of feasible price vectors, and � =
�x ≥ 0� x = �p
� p ∈ �� ⊆ �n

+ is the set of achievable
demand rate vectors. We assume that � is a convex
set. For ease of exposition, the demand function �·

is assumed to be stationary; an extension to allow for
nonstationarities could follow Gallego and van Ryzin
(1994, 1997) and Zhao and Zheng (2000). This class of
demand functions incorporates product complemen-
tarity and substitution effects. Following Gallego and
van Ryzin (1994, 1997), we consider regular demand
functions that satisfy some additional conditions. In
the sequel, x′ denotes the transpose of any matrix x,
for any real number y, y+ �=max�0�y
, e is the vector
of ones of appropriate dimension, and “a.s.” stands
for almost surely.

Definition 1. A demand function is said to be reg-
ular if it is a continuously differentiable, bounded
function, and: (a) for each product i, i�p
 is strictly
decreasing in pi, (b) limpi→
 i�p
= 0 (i.e., consumers
have bounded wealth), and (c) the revenue rate
p′�p
=∑n

i=1 pii�p
 is bounded for all p ∈� and has
a finite maximizer p̄.
We assume that there exists a continuous inverse

demand function p�
, p� � → �, that maps an
achievable vector of demand rates  into a corre-
sponding vector of prices p�
. This allows us to view
the demand rate vector as the firm’s control, and infer
the appropriate prices using the inverse demand func-
tion. The expected revenue rate can be expressed as
a function of the vector of demand rates  as R�
 �=
′p�
, and is assumed to be continuous, bounded,
and strictly concave.

Example. Under a linear demand model, the de-
mand for product i is given by

i�p
=�i − biipi −
∑
j =i
bijpj or

(in vector form) �p
=�−Bp�

where �i is the market potential for product i and bii,
bij are the price and cross-price sensitivity parame-
ters. The inverse demand and revenue functions are
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p�
 = B−1�� − 
 and R�
 = ′B−1�� − 
, respec-
tively. Assumption 1 requires that bii > 0 for all i.
To ensure that the inverse demand function is well
defined and the revenue function is concave, we
require that either bii >

∑
j =i �bji� or bii >

∑
j =i �bij � for

all i; both conditions guarantee that B is invertible and
that its eigenvalues have positive real parts (Horn and
Johnson 1994, Thm. 6.1.10).
The problem that we address is roughly described

as follows: Given an initial capacity C, a selling hori-
zon T , and a demand function that maps a vector of
prices to a vector of demand rates, the firm’s goal is to
choose a nonanticipating dynamic pricing strategy for
each product in order to maximize its total expected
revenues.
We adopt a discrete-time formulation, i.e., one

where time has been discretized in small intervals
of length �t, indexed by t = 1� � � � � T , such that
��product i arrival in �0��t�
 = i�t + o��t
 for all i,
and ��product i and j arrivals in �0��t�
= ij��t


2+
o���t
2
, where o�x
 implies that o�x
/x→ 0 as x→ 0.
With slight abuse of notation, we write i in place of
i�t, and refer to i either as the demand or the buy-
ing probability for product i. The random demand
vector in period t, denoted by ��t�
, is Bernoulli
with probabilities �t
 = �p�t

, and ���i�t
 = 1
 =
i�p�t

 and ���i�t
= 0
= 1−i�p�t

 for all i. Treating
the demand rates i as the control variables (prices
are inferred via the inverse demand relationship),
the discrete-time formulation of the dynamic pricing
problem of Gallego and van Ryzin (1997) is

max
��t
� t=1�����T �

{
Ɛ

[ T∑
t=1
p��t

′��t�


]
�

T∑
t=1
e′��t�
≤C a.s. and �t
∈� ∀ t

}
� (1)

2.1.2. Capacity Control Problem. The second
problem that we consider is the one studied by
Lee and Hersh (1993), where the price vector p and
the demand rate vector  = �p
 are fixed, and the
firm optimizes over capacity allocation decisions. For
this problem and without any loss of generality, we
assume that products are labelled such that p1 ≥
p2 ≥ · · · ≥ pn. The firm has discretion as to which prod-
uct requests to accept at any given time. This is mod-
elled through the control ui�t
 that is equal to the

probability of accepting a product i request at time t.
It is customary to assume that the firm is “opening”
or “closing” products, thus considering controls ui�·

that are zero or one, but this need not be imposed as
a restriction. The dynamic capacity control problem is
the following:

max
�u�t
� t=1�����T �

{
Ɛ

[ T∑
t=1
p′��t�u


]
�

T∑
t=1
e′��t�u
≤C

a.s. 1 and ui�t
 ∈ �0�1� ∀ t
}
� (2)

where u above denotes the vector with coordi-
nates uii.

3. Analysis of the Pricing and
Capacity Control Problems

This section describes how to reduce (1) and (2) into
dynamic optimization problems where the control is
the (one-dimensional) aggregate capacity consump-
tion rate. Subsequently, we derive some structural
properties for these two problems through a unified
analysis.

3.1. A Common Formulation in Terms of
the Aggregate Capacity Consumption

3.1.1. Dynamic Pricing Problem. Let x denote the
number of remaining units of capacity at the begin-
ning of period t, and V �x� t
 be the expected revenue-
to-go starting at time t with x units of capacity left.
Then, the Bellman equation associated with (1) is

V �x� t
=max
∈�

{ n∑
i=1
i�pi�
+V �x− 1� t+ 1
�

+ �1− e′
V �x� t+ 1

}
� (3)

with the boundary conditions

V �x�T + 1
= 0 ∀x and V �0� t
= 0 ∀ t� (4)

Letting !V �x� t
= V �x� t+ 1
−V �x− 1� t+ 1
 denote
the marginal value of one unit of capacity as a func-
tion of the state �x� t
, (3) can be rewritten as

V �x� t
 = max
∈�

{
R�
−

n∑
i=1
i!V �x� t


}
+V �x� t+ 1


= max
"∈�

�Rr�"
−"!V �x� t
�+V �x� t+ 1
� (5)
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where " �=∑n
i=1 i is the aggregate rate of capacity con-

sumption, � �= �"�
∑n

i=1 i = "�  ∈ �� is the set of
achievable capacity consumption rates, and

Rr�"
 �=max


{
R�
�

n∑
i=1
i = "�  ∈�

}
(6)

is the maximum achievable revenue rate subject to the
constraint that all products jointly consume capacity
at a rate ". Note that (6) is a concave maximization
problem over a convex set, and its solution is read-
ily computable, often in closed form (examples are
given in §5). Moreover, Rr�·
 is a concave function and
satisfies the conditions of Assumption 1. The optimal
vector of demand rates, denoted by r�"
, is unique
and continuous in ".

Proposition 1. The dynamic pricing problem (1) can
be reduced to the dynamic program (5) and (4) expressed
in terms of the aggregate consumption rate. In particular, if
"∗�x� t
 denotes the associated optimal control and ∗�x� t

and p∗�x� t
 denote the optimal demand rate and price vec-
tors associated with (1), then ∗�x� t
 = r�"∗�x� t

 and
p∗�x� t
= p�r�"∗�x� t


.

3.1.2. The Capacity Control Problem. Similarly,
the Bellman equation associated with (2) is

V �x� t
= max
ui∈�0�1�

{ n∑
i=1
iui�pi +V �x− 1� t+ 1
�

+ �1−u′
 V �x� t+ 1

}
� (7)

with the boundary condition (4), which, using the
marginal value of capacity !V becomes

V �x� t
 = max
ui∈�0�1�

{ n∑
i=1
iuipi −u′!V �x� t


}

+V �x� t+ 1
 (8)

= max
0≤"≤∑n

i=1i
�Ra�"
−"!V �x�t
�+V �x�t+1
� (9)

where "= u′ and

Ra�"
=max
u

{ n∑
i=1
uiipi� u

′= "� ui ∈ �0�1�
}

is the maximum revenue rate when the capacity is
consumed at a rate equal to ", and ua�"
 is the corre-
sponding control.

Proposition 2. The capacity control problem (2) can
be reduced to the dynamic program (9) and (4) expressed
in terms of the aggregate consumption rate ". In par-
ticular, if "∗�x� t
 denotes the optimal solution of (9)
and (4) and u∗�x� t
 denote the optimal policy for (2), then
u∗�x� t
= ua�"∗�x� t

.

A similar result was derived by Talluri and van
Ryzin (2004a) for a capacity control problem for a
model with customer choice.

3.2. A Unified Analysis of the Pricing and
Capacity Control Problems

The preceding analysis illustrates that both problems
can be reduced to “appropriate” single-product pric-
ing problems, highlighting their common structure
and enabling a unified treatment. As a starting obser-
vation, for both (5) and (9) the optimal control "∗�x� t

is computed from

"∗�x� t
= argmax
"∈�

�R�"
−"!V �x� t
��

where R�·
 is a concave increasing revenue function.
Using the properties of R�·
, one gets that "∗�x� t

is decreasing in !V �x� t
, which using a backward
induction argument in t gives that !V �x� t
 is decreas-
ing in x and t. These standard results for single-
product dynamic pricing problems are summarized
below; a proof can be found in Talluri and van Ryzin
(2004b, Prop. 5.2, Ch. 4).

Proposition 3 (Talluri and van Ryzin 2004b,
Prop. 5.2, Ch. 4). For both problems defined in (1) and (2),
we have that
1. "∗�x� t
 is decreasing in the marginal value of capac-

ity !V �x� t
, and
2. !V �x� t
 is decreasing in x and t.

Structural results for the pricing and capacity allo-
cation policies follow from the properties of Rr , r

and Ra, ua, respectively. For example, consider the
pricing problem for the case where the products are
nonsubstitutes, i.e., the demand for product i is only
a function of the price for that product pi. In that
case, the Lagrangian associated with (6) is L��x�y
=
R�
 + x�" − ∑n

i=1 i
 − y′, with first-order condi-
tions given by &R�
/&i = x + yi, for some x ≥ 0
and yi ≤ 0 with yi = 0 if i > 0. It is easy to show
that x is decreasing in " (i.e., the shadow price for
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the capacity consumption constraint decreases as the
rate " increases), and that ri �"
 is decreasing in x.

Corollary 1. Consider the problem specified in (3)
and (4), and further assume that the products are non-
substitutes, i.e., i�p
 = i�pi
 for all i. Then, 

∗
i �x� t
 is

nondecreasing in "∗�x� t
 (and nonincreasing in !V �x� t
).

A similar result can be obtained when products are
substitutable provided that the demand model satis-
fies certain conditions analogous to those of the sen-
sitivity matrix B of the linear model in §2.
For the capacity control problem, it is easy to

recover some well-known structural properties of the
optimal policy, see, e.g., Lee and Hersh (1993). Our
derivation based on the capacity consumption rate
offers new intuition as to why they hold. Specifically,
Ra�·
 is a knapsack solution for which

Ra�"
=min
i
ci + pi" and

uak�"
=min
(
�"−∑

i<k i

+

k
�1

)
�

(10)

where c1 = 0 and ci = ∑
k<i k�pk − pi
, and for

any x ∈ �, x+ �= max�x�0
, and the optimal control
"∗�x� t
 reduces to the solution to max�mini ci + �pi −
!V �x� t

"� 0 ≤ " ≤ ∑n

i=1 i�. Let i
∗�x� t
 = max�i ≥ 1�

pi ≥ !V �x� t
�. Then, by inspecting the form of
the piecewise-linear objective function involved in
the calculation of "∗�x� t
, we get that "∗�x� t
 =∑n

i≤i∗�x� t
 i. That is, the solution is “bang-bang” in the
sense that the form of the optimal control is such that
u∗
i �x� t
 is zero if i > i∗�x� t
 and one if i ≤ i∗�x� t
.
In addition, from Proposition 3, Part 1, we see that
i∗�x� t
 is decreasing in the marginal value of capacity
!V �x� t
.

Corollary 2. For the capacity control problem (2) or,
equivalently, (9) and (4), the optimal allocation policy is
nested in that u∗

i �x� t
= 1 if i ≤ i∗�x� t
, and u∗
i �x� t
= 0

otherwise, and i∗�x� t
 is decreasing in the marginal value
of capacity !V �x� t
.

Remark. The subproblem of computing the opti-
mal revenue subject to a constraint on the aggregate
capacity consumption rate specified in (6) and (10)
defines an efficient frontier �"�Rr�"

 and �"�Ra�"



for the dynamic pricing and capacity allocation prob-
lems, respectively. As in the context of portfolio

optimization, the efficient frontier provides a system-
atic framework for comparing different policies and
highlights the structure of the respective optimal con-
trols. It may also lead to computational improve-
ments if this subproblem can be solved efficiently,
preferably in closed form. This is possible in some
common demand models such as the linear and the
multinomial logit. Such an efficient frontier has also
appeared and been discussed in more detail in Feng
and Xiao (2000, 2004) and Talluri and van Ryzin
(2004a). Finally, we note that the structure of the
dynamic programs studied in this section has been
observed in other papers, such as Lin et al. (2003) and
their study of single-resource capacity control prob-
lems where each arrival may request multiple units
of capacity; and Vulcano et al. (2002) and their anal-
ysis of optimal dynamic auctions. The latter involves
an analysis of a discrete-time, batch-demand analog
to the dynamic program studied here.

4. Analysis of the Pricing Problem
Using Its Fluid Approximation

This section studies deterministic (fluid model) for-
mulations of multiproduct revenue management
problems to provide some structural results (§4.1) and
suggest simple and implementable heuristics for the
pricing and capacity control problems (§4.2). The lat-
ter have desirable theoretical performance guaran-
tees and are shown to perform well in the numerical
experiments of the next section. Finally, §4.3 sketches
how to extend these ideas to the network setting. Fol-
lowing the results of §3.2 that relate the pricing and
capacity control formulations, hereafter we will focus
exclusively on the former.

4.1. Solution to the Deterministic Multiproduct
Pricing Problem

The “fluid” model has deterministic and continuous
dynamics, and is obtained by replacing the discrete
stochastic demand process by its rate, which now
evolves as a continuous process. It is rigorously jus-
tified as a limit under a law-of-large-numbers type
of scaling as the potential demand and the capacity
grow proportionally large; see Gallego and van Ryzin
(1994, 1997) and §4.2. It is simplest to describe the
fluid model in continuous time (this is consistent with
Gallego and van Ryzin 1994, 1997). In more detail, the
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realized instantaneous demand for product i at time t
in the fluid model is deterministic and given by i�t
.
We allow product i requests to consume capacity at
a rate of ai > 0 units per unit of demand, and denote
by a the vector �a1� � � � � an�. This is a generalization of
the model considered thus far, which assumed uni-
form capacity requirements (all equal to 1). With a
general capacity requirement vector a, the capacity
consumption rate is defined by "= a′, and the defi-
nitions of Rr and r can be appropriately adjusted to
reflect that change. The system dynamics are given by
dx�t
/dt = −∑n

i=1 aii�t
, x�0
 = C, together with the
boundary condition that x�T 
 ≥ 0. The firm selects a
demand rate i�t
 (or a price) at each time t. The fluid
formulation of the multiproduct pricing problem is
the following:

max
��t
� t∈�0�T ��

{∫ T

0
R��t

 dt�

∫ T

0
a′�t
 dt ≤C and �t
 ∈� ∀ t

}
� (11)

Single-product problem. In this case, Gallego and van
Ryzin (1994) showed that a constant price (and thus
a constant demand rate) is optimal for (11). Specif-
ically, let ̂ = argmax�R�
�  ∈ �� and �p = p�̂
 be
the demand rate and price, respectively, that maxi-
mize the revenue rate disregarding any capacity con-
siderations. Also, let 0 = C/T be the run-out rate
that depletes capacity at time T , and p0 = p�0
. Then,
Gallego and van Ryzin (1994) showed that the opti-
mal controls are constant over time and given by ̄=
min�̂�0
 and p̄ =max��p�p0
. (The overbar notation
denotes the optimal fluid solution.) Intuitively, the
firm uses the revenue-maximizing price �p unless this
would deplete the capacity too soon, in which case it
increases its unit price to p0 and sells its capacity by
time T , while accruing higher total revenues. Gallego
and van Ryzin (1997, §4.5) extended these results to
multiple products, but in that case without providing
such a succinct solution.
Multiproduct problem. Following the approach of §3,

we can reduce the multiproduct problem to an
appropriate single-product one, and thus solve it in
closed form. Specifically, recalling the definitions of
the aggregate revenue function Rr�"
 and optimal
demand rate vector r�"
 in (6), adjusted for the fact

that "= a′, (11) can be rewritten as

max
�"�t
� t∈�0�T ��

{∫ T

0
Rr�"�t

 dt�

∫ T

0
"�t
 dt ≤C� "�t
 ∈� ∀ t

}
� (12)

Note that (12) is identical to a single-product problem
with revenue function Rr , and thus is solvable using
the approach described above. Let "0 �=C/T and �"=
argmax" R

r�"
. Then, the optimal solution to (12) is to
consume capacity at a constant rate "̄ given by

"̄�t
 �=min� �"�"0
 ∀ t� (13)

the corresponding vector of demand rates is r�"̄
,
while the price vector is p�r�"̄

. A direct verification
that this solution satisfies the optimality conditions
for (11) establishes the following:

Proposition 4. Let ̄�·
 and p̄�·
 denote the optimal
vectors of demand rates and prices for (11). Then, ̄, p̄
are constant over time and are given by ̄�t
= r�"̄
 and
p̄�t
= p�r�"̄

.

4.2. Asymptotically Optimal Heuristics Extracted
from the Deterministic Model

Based on the preceding analysis, we discuss three
heuristics for the underlying revenue management
problems, which we analyze in the asymptotic set-
ting introduced in Gallego and van Ryzin (1997) and
Cooper (2002). Among other things, it is shown that
the dynamic heuristic that “resolves” the fluid policy
as t progresses is asymptotically optimal in an appro-
priate sense.

a. The Static Pricing Heuristic of Gallego and van Ryzin
�1997
. This policy implements the static prices p̄ spec-
ified in Proposition 4. (This is the “make-to-order”
heuristic in Gallego and van Ryzin 1997.)

4.2.1. Dynamic Heuristics. The static nature of
policy (a) is desirable for implementation purposes
(see Gallego and van Ryzin 1997), but also lacks the
capability of corrective action against stochastic fluc-
tuations. This does not arise in the fluid formulation,
where the capacity is drained along the optimal deter-
ministic trajectory, but it is relevant for the stochas-
tic problems of original interest. The next heuristics
provide two possible adjustments to this static policy
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that add such control capability and seem of practical
interest. We start by observing that the solution of the
fluid pricing problem of §4.1 can also be described in
feedback form as

"̄�x� t
=min
(
�"� x

T − t

)
� (14)

where x is the remaining capacity at time t. The deter-
ministic trajectory of the fluid model is, of course,
such that x/�T − t
 = C/T for all t if �" ≥ C/T , and
x/�T − t
= �C − �"t
/�T − t
≥ C/T if �" < C/T . In both
cases, "̄�x� t
=min� �"�C/T 
 for all x, t along the opti-
mal fluid trajectory of the remaining capacity process,
and thus (14) is identical to the static control derived
in (13).

b. A List-Price Capacity Control (LPCC) Heuristic.
One way to implement (14) is by introducing capac-
ity control capability on top of the static prices given
in (a). Specifically, our second heuristic is defined as
follows:
1. price according to p̄ and label products such that

p̄1/a1 ≥ p̄2/a2 ≥ · · · ≥ p̄n/an, and
2. compute "̄�x� t
 and use the capacity controls

u1�x� t
= 1 if x > 0, u1�0� t
= 0, and

ui�x� t
=


1 if "̄�x� t
−∑

j<i

aj ̄j ≥ 0

0 otherwise
for i≥ 2� (15)

Note that this policy can only reduce the aggregate
capacity consumption rate from its nominal value of∑n

i=1 aīi, but can never increase it. A product is made
available only if the fluid solution starting from that
state would choose to sell this product in all future
time periods, and “closes” the product if the fluid
solution would dictate only partial acceptance of the
associated demand.
This policy is a refinement of the static pricing pol-

icy in (a) and the make-to-order heuristic of Gallego
and van Ryzin (1997). Other examples of joint pric-
ing and capacity controls can be found in the recent
papers by Vulcano et al. (2002), Lin et al. (2003), and
Feng and Xiao (2004).

c. A Dynamic Pricing Heuristic. The third policy
translates the aggregate control "̄�x� t
 into product-
level rates (and prices) through

�x� t
= r�"̄�x� t

 and p�x� t
= p��x� t

� (16)

where the mapping r�·
 was the maximizer in (6)
and it is continuous in ". This corresponds to the idea
of “resolving” the fluid problem as we step through
time, which is widely applied in practice, where, how-
ever, the resolving occurs at discrete points in time,
e.g., daily or weekly depending on the application set-
ting. Despite its practical appeal and use, to the best
of our knowledge policies that use this resolving idea
have not been analyzed theoretically, other than the
isolated example provided by Cooper (2002). Our pre-
ceding discussion illustrates that “resolving” is noth-
ing but implementing the fluid policy in feedback
form. The analysis that follows provides a characteri-
zation of its asymptotic behavior, while the numerical
results of the next section demonstrate that it tends
to outperform the other two candidate policies. The
single-product version of this policy has also been
studied by Reiman (2002).

4.2.2. Asymptotic Performance Analysis of the
Pricing Heuristics. The remainder of this subsection
offers a brief asymptotic characterization of the per-
formance under these three heuristics that shows that
all three are (fluid-scale) asymptotically optimal in
a regime where the potential demand and capac-
ity grow proportionally large; this is the first-order
asymptotic optimality criterion of Gallego and van
Ryzin (1997) and Cooper (2002). Specifically, using k
as an index, we consider a sequence of problems with
demand model k�·
 = k�·
 and capacity Ck = kC,
and let k increase to infinity; hereafter, a superscript k
will denote quantities that scale with k. Let Ni for
i= 1� � � � �n denote independent unit rate Poisson pro-
cesses, and recall that the functional strong-law-of-
large numbers for the Poisson process asserts that as
k→
 and for all t ≥ 0,

Ni�kt


k
→ t a.s. (17)

For all of the candidate policies, the capacity dy-
namics can be expressed as follows. The cumulative
demand for that product up to time t is equal to
Ni�A

k
i �t

, where A

k
i �t
=

∫ t

0 
k
i �s
 ds, and the remaining

capacity at time t is

Xk�t
=Ck−
n∑
i=1
aiNi�A

k
i �t

� (18)
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Our goal here is to analyze the “fluid-scale” behav-
ior of the capacity process defined as �Xk�t
 �=Xk�t
/k
under the three candidate policies. The asymptotic
optimality of the static policy (a) was established
by Gallego and van Ryzin (1997). Nevertheless, we
include our analysis, which is different than theirs
and serves to introduce the ideas used in studying the
dynamic policies (b) and (c).
Analysis of the static heuristic (a). The firm uses the

constant price vector p̄, which induces the demand
rates k�p̄
 = k̄. Under this policy, Ak

i �t
 = ̄ikt, and
the capacity dynamics are Xk

a �t
 = �Ck − ∑n
i=1 aiNi ·

�Ak
i �t




+. (The subscript is used to identify the policy.)
As k→

Ni�A

k
i �t



k
→ ̄it a.s., uniformly in t ∈ �0�T �� (19)

from which it follows that as k → 
 and for all
t ∈ �0�T �

�Xk
a �t
→

(
C −

n∑
i=1
aīit

)+
=C − "̄t a.s.

(The �·
+ was removed because from (13) "̄t ≤ C for
all t ∈ �0�T �.) Let Rk

a denote the revenues extracted
under policy (a), and /k �= inf�s ≥ 0�

∑n
i=1 aiNi�̄iks


≥ Ck� be the random time where the aggregate
capacity requested reaches or exceeds the available
capacity Ck. Then, Rk

a �=
∑n

i=1 p̄iNi�k̄imin�T � /k

− �,
where � is a random variable that corrects revenues
for the case where /k < T , which is bounded above by
maxi p̄i. (We will not delve into an accurate descrip-
tion of �, because it is asymptotically negligible.)
Using (19) and arguing by contradiction, one can eas-
ily conclude that �T − /k
+ → 0 a.s., as k→
. Using
the expression for Rk

a we get the following:

Proposition 5. Suppose that demand and capacity are
scaled according to k�·
 = k�·
 and Ck = kC, and con-
sider the static pricing policy pk�x� t
= p̄ for all x, t and
all k. Then, as k→
, �Xk

a �t
→C− "̄t a.s., uniformly in t,
and �1/k
Rk

a →
∑n

i=1 p̄īiT a.s.

Recall the fact established in Gallego and van
Ryzin (1997) that the solution of the deterministic
pricing problem serves as an upper bound for the
revenues extracted in the stochastic system, i.e., Rk

a ≤
k
∑n

i=1 p̄īiT . Applying the bounded convergence the-
orem gives that ƐRk

a → ∑n
i=1 p̄īiT , and establishes

the asymptotic optimality of the static pricing heuris-
tic (a).

Analysis of the dynamic heuristic (c). The dynamic
nature of this policy requires a more detailed study.
The cumulative demand for product i up to time t is
equal to Ni�A

k
i �t

, where

Ak
i �t
=

∫ t

0
ki�s
 ds where

i�s
= ri
(
min� �"�Xk

c �s
/�k�T − s



)

(20)

for ri �·
 defined in (6), and Xk
c �t
 denotes the remain-

ing capacity at time t under policy (c), defined in (18).
Now, note that Ak�0
 = 0, Ak�t
 is nondecreasing
and Ak

i �t
 − Ak
i �s
 ≤ �t − s
 · ki�max, where i�max =

argmax�i�  ∈��. This implies that the family of pro-
cesses ��1/k
Ak�t
� is equicontinuous, and therefore
relatively compact. It follows that it has a converging
subsequence, say kj , such that �1/kj
A

kk
i �t
→ Āi�t
 for

all i. Along this subsequence we get that Ni�A
kj
i �t

/kj

converges to Āi�t
, and therefore that �Xkj
c �t
 itself con-

verges to a limit x̄c�t
; the last two results hold a.s.,
uniformly in t. Expression (22) will show that the
limit trajectories do not depend on the selection of
the converging subsequence itself. In the sequel we
denote the converging subsequence by k to simplify
notation. Using the continuity of ri �·
 and Lemma 2.4
of Dai and Williams (1995), we get that

1
k
Ak
i �t
 =

∫ t

0
ri

(
min

(
�"�

�Xk
c �s


T − s

))
ds

→
∫ t

0
ri

(
min

(
�"� x̄c�s

T − s

))
ds (21)

as k→
 a.s., uniformly in t. Using (17), (18), and (21),
we get that as k→


�Xk
c �t
 = C − 1

k

n∑
i=1
aiNi�A

k
i �t



→ C −
∫ t

0
min

(
�"� x̄c�s

T − s

)
ds =C − "̄t� (22)

a.s., uniformly in t. The revenues extracted under pol-
icy (c) are Rk

c =
∑n

i=1
∫ t

0 p
k
i �t
 dNi�A

k
i �t

, where p

k�t
 is
the price vector that corresponds to r�min� �"� �Xk

c �t
/

�T − t


, the demand rate vector at time t, and
the integrals should be interpreted in the Riemann-
Stieltjes sense. From (21) and (22) we have that
ri �min� �"� �Xk

c �t
/�T − t


→ ̄i a.s., uniformly in t. By
the continuity of the inverse demand function we
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have that pk�t
→ p̄ a.s., uniformly in t, and therefore,
again using Lemma 2.4 of Dai and Williams (1995),
we get the result summarized below.

Proposition 6. Suppose that demand and capacity are
scaled according to k�·
 = k�·
 and Ck = kC, and con-
sider the dynamic pricing heuristic defined through (20).
Then, �Xk

c �t
 → C − "̄�t
 a.s., uniformly in �0�T �, and
�1/k
Rk

c →
∑n

i=1 p̄īiT a.s.

Analysis of the LPCC heuristic (b). This policy is
defined through Ak

i �t
 = k̄i ·
∫ t

0 u
k
i �t
 dt, where u

k
i �t


was defined in (15) and can be expressed as follows:

uk1�t
= 1��Xk
b �t
 > 0� and

uki �t
= 1
{
min

(
�"
�Xk
b �t


T − t

)
−∑

j<i

aj ̄j ≥ aīi

}
for i≥ 2�

(23)
where 1�·� is the indicator function. Similarly to the
analysis of policy (c), the family ��Xk

b �t
� t ∈ �0�T �� is
tight, and thus it has a converging subsequence �kj�
on which �Xkj

b �t
→ x̄b�t
 a.s., uniformly in t. Writing
down x̄b�t
 and evaluating ui�t
 reveals that in the
limit model ui�t
= 1 for all products i. Let Rk

b be the
corresponding revenue. Similar arguments to the ones
used above give the following result.

Proposition 7. Suppose that demand and capacity are
scaled according to k�·
 = k�·
 and Ck = kC, and con-
sider the LPCC heuristic defined through (23). Then,
�Xk
b �t
→C− "̄�t
 a.s., uniformly in �0�T �, and �1/k
Rk

b →∑n
i=1 p̄īiT a.s.

That is, resolving in the context of the dynamic
pricing or the LPCC heuristics is fluid-scale asymp-
totically optimal, as is the static policy (a). This
shows that the suboptimal behavior demonstrated by
Cooper (2002) does not persist in systems with large
capacity and large demand. The same asymptotic per-
formance can be achieved while resolving at discrete
points in time, provided that this is done sufficiently
frequently. If lk is the time between resolving epochs,
then the type of analysis used in studying discrete-
review policies (see Harrison 1996 and Maglaras 2000)
can be applied to show that it suffices that lk ↓ 0.
This allows the number of demand requests between
resolving periods to be large in absolute terms, but
small compared to the capacity; e.g., a period lk =
log�k
/k corresponds to order log�k
 arrivals.

4.3. Dynamic Pricing Network Revenue
Management Problems

Suppose that the firm is operating a network of
resources, indexed by j = 1� � � � �m, and that each
product i request consumes Aij units of resource j

capacity. Let A �= �Aij � denote the associated capac-
ity consumption matrix, and assume that the initial
capacity for each resource j is Cj . Then, the fluid
model formulation of the network dynamic pricing
problem is

max
��t
� t∈�0�T ��

{∫ T

0
R��t

 dt�

∫ T

0
A�t
 dt ≤C and �t
 ∈� ∀ t

}
� (24)

As before, this problem can be expressed in terms
of ", which is defined by " �=A. Specifically, let

Rr�"
 �=max

�R�
� A= "�  ∈�� (25)

be the maximum achievable revenue rate when
resource capacity is consumed at a rate ", and let r�"

denote the corresponding vector of optimal demand
rates. Then, (24) can be reduced to

max
�"�t
� t∈�0�T ��

{∫ T

0
Rr�"�t

 dt�

∫ T

0
"�t
 dt ≤C and "�t
 ∈� ∀ t

}
� (26)

Let "̄ denote the solution to (26). Then, r�"̄
 is the
vector of optimal demand rates for (24). This reduc-
tion could prove computationally beneficial because,
as is often the case, the number of products (e.g.,
the number of fare-class and origin-destination pairs)
tends to be greater than the number of resources (e.g.,
number of flights in a hub-and-spoke network). We
refer the reader to Gallego and van Ryzin (1997) and
Kleywegt (2001) for fluid formulations to multiprod-
uct network revenue management problems.

5. Numerical Examples
This section reports on a set of numerical examples
that contrast the performance of the heuristics pro-
posed in the previous section to that of the optimal
policy obtained from the dynamic program. Our base
model has two products, each consuming one unit of
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capacity per request, and a linear demand relation-
ship of the form �p
=�−Bp with �= �0�3�0�1� and
T = 200 time periods. The price set is � = �p� � −
Bp≥ 0�, the inverse demand is p�
= B−1��−
, and
the revenue function is R�
= ′B−1��−
. The poli-
cies that we consider are the following:
• “RevMax” corresponds to the monopoly price

vector �p that maximizes the aggregate instantaneous
revenue rate disregarding the capacity constraints,
given by �p = B−1�� − ̂
, where ̂ = argmax�′B−1 ·
��−
� ≥ 0�= �1/2
�B−1+B−1′
−1�.
• “Fluid” implemented the price vector p̄= p�r�"̄



as defined in Proposition 4.
• “LPCC” is the joint (list) pricing and capacity

control heuristic defined through (15).
• “DynPrice” is the dynamic implementation of the

fluid policy defined through (16).
• “DP” implemented the solution of the dynamic

program outlined in §3.
Remark (Comments on Complexity). The expected

revenues under the first two static policies were com-
puted analytically using a binomial model that under
DP was simply V �C�T 
, while for the remaining
policies we averaged out revenues over 1,000 sim-
ulated sample paths. The effort needed to compute
V �C�T 
 in problems with uniform capacity require-
ments (Tables 1 to 3) is that of solving a single-
product pricing problem, which grows in proportion
to C × T . If Rr�"
 and r�"
 cannot be expressed in
closed form and are not precomputed and stored,
the state space dimension of the dynamic program
stays the same, but its complexity increases by a con-
stant factor that depends on the number of products.
Table 4 looks at examples with nonuniform capac-
ity requirements, where the demand aggregation no
longer applies and the backward induction step of
the dynamic program needs to be changed, increasing
the overall complexity again by a constant factor. The
complexity of computing LPCC and DynPrice, the
performance of which is the emphasis of our study, is
negligible.

5.1.1. The Effect of the Joint Capacity Constraint.
Table 1 provides an illustration of the behavior of
these heuristics on a particular problem instance as
we varied the available capacity. Tables 2 and 3 will
provide summary statistics for many randomly gener-
ated test cases. The demand model had no cross-price

Table 1 Optimality Gaps Relative to Optimal Policy (DP)

C RevMax (%) Fluid (%) LPCC (%) DynPrice (%) DP

25 31�4 3.0 2.6 0.4 417.63
30 22�2 4.4 3.3 1.0 440.53
35 12�6 5.1 1.9 1.3 451.63
40 5�4 5.4 0.7 0.7 457.00
45 1�8 1.8 0.2 0.2 459.50
50 0�7 0.7 0.3 0.3 460.39

Note. B = diag�1�6�

terms and was given by 1�p
= 0�3− 1p1 and 2�p
=
0�1− 6p2.
The Fluid pricing problem becomes unconstrained

for C ≥ 40 units, in which cases the RevMax and
Fluid prices coincide. We observe the following. First,
the relative performance under all heuristics improves
as the capacity C increases; this is consistent with
the results of Gallego and van Ryzin (1994, 1997) for
Fluid and RevMax. Second, while the Fluid heuris-
tic that incorporates the capacity constraint outper-
forms RevMax when capacity is scarce, its regret over
the DP policy can still be substantial (2%–5%). Third,
when the capacity is scarce, C ≤ 25, the fluid prices
effectively switch off Product 2 and operate the sys-
tem as a single-product one. As the capacity increases,
it is optimal to offer both products, and the effect
of the capacity control of LPCC becomes more evi-
dent. Switching from an effectively single-product to
a two-product solution causes the optimality gaps to
be nonmonotone. Fourth, the dynamic pricing (resolv-
ing) heuristic is significantly better than all others
when capacity is scarce.

5.1.2. The Cross-Price Elasticity Effects and Mul-
tiple Products. Table 2 summarizes results from 100
test cases for systems with fixed capacity C = 40, lin-
ear demand model with �= �0�3�0�1�, and randomly

Table 2 Average and Standard Deviations of % Optimality Gaps for
Two-Product Examples: C = 40, ��p�= 	−Bp, 	= 
0�3�0�1�,
and Random B Matrices

�� RevMax Fluid LPCC DynPrice

0.8–0.9 1.5 (0.3) 1.6 (0.3) 1.6 (0.3) 0.8 (0.2)
0.9–1.0 3.6 (0.6) 3.6 (0.5) 3.1 (1.6) 1.1 (0.2)
1.0–1.1 5.2 (1.1) 3.9 (0.3) 3.0 (1.5) 1.0 (0.2)
1.1–1.2 9.8 (1.3) 3.1 (0.4) 2.4 (0.3) 1.0 (0.2)
1.2–1.3 14.0 (1.5) 3.1 (0.4) 2.1 (0.2) 0.9 (0.2)
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Table 3 Average and Standard Deviations of % Optimality Gaps for
Three-Product Examples: C = 40, ��p� = 	 − Bp, 	 =

0�3�0�05�0�05�, and Random B Matrices

�� RevMax Fluid LPCC DynPrice

0.8–0.9 1.5 (0.3) 1.6 (0.2) 1.5 (0.3) 0.8 (0.1)
0.9–1.0 3.3 (0.7) 3.3 (0.7) 3.3 (1.6) 1.0 (0.2)
1.0–1.1 6.4 (1.4) 3.7 (0.4) 3.6 (2.0) 1.1 (0.2)
1.1–1.2 9.4 (1.3) 3.1 (0.3) 3.0 (2.0) 0.9 (0.2)
1.2–1.3 14.0 (1.3) 3.0 (0.3) 2.1 (1.5) 0.8 (0.2)

generated B matrices; the elements of the main diago-
nal were drawn from a uniform distribution on �0�1�,
while the cross terms were drawn from a uniform dis-
tribution on �−1�0�. We then tested that the dominant
diagonal condition given in §2 was satisfied, which
also assured that an inverse exists. Results have been
grouped according to their nominal load factors �" �=
�
∑

i aîi
/C, where ̂ is the RevMax demand vector
that would maximize instantaneous revenue in the
absence of the capacity constraint.1 The table reports
the average and standard deviation of the % optimal-
ity gap for each candidate policy. The main obser-
vation is that DynPrice significantly outperformed
all other heuristics not only in terms of the average
gap, but also in its standard deviation. In turn, LPCC
improved over Fluid in cases where the capacity con-
straint was binding and the ability to incorporate
the extra element of capacity control decisions was
beneficial. Table 3 reports results for three-product
examples, and illustrates the consistently good perfor-
mance of the LPCC and DynPrice policies. The resolv-
ing structure of the latter is important in problems
with multiple products and substitution and/or com-
plementarity effects.

5.1.3. NonuniformCapacity Requirements. Table
4 summarizes results for two models with two prod-
ucts that have different capacity requirements. This
change complicates the associated dynamic program-
ming formulation (see comments in the beginning
of this section), but does not affect the fluid analy-
sis of §4.1, and the heuristics extracted therein are
still valid. In the notation of §4, product i consumes
ai units of capacity and a1 = a2. Our findings suggest

1 A file with the test parameters for Tables 2 and 3 is avail-
able at http://www.meiss.com/ or http://www.gsb.columbia.edu/
faculty/cmaglaras/maglaras.htm.

Table 4 Optimality Gaps Relative to Optimal Policy (DP)
(i) B = 
1 − 0�4−0�6 6� and a= 
1 2�

C RevMax (%) Fluid (%) LPCC (%) DynPrice (%) DP

30 42�7 4.3 3.7 2.7 476.91
40 27�1 5.6 2.1 1.5 496.05
50 12�0 5.7 1.7 1.0 502.77
60 2�9 3.2 1.1 0.3 505.81
70 0�8 0.7 0.4 0.3 506.73
80 0�3 0.2 0.2 0.1 506.86

(ii) B = 
1 − 0�4−0�6 6� and a= 
2 1�

C RevMax (%) Fluid (%) LPCC (%) DynPrice (%) DP

30 39�5 4.4 4.0 3.9 340.95
40 32�2 3.3 3.0 1.7 406.89
50 23�4 3.0 2.9 0.6 451.85
60 14�2 3.7 3.4 1.2 479.64
70 6�0 4.4 3.6 0.8 495.78
80 1�7 2.0 1.7 0.7 503.60

that the fluid model heuristics perform quite well in
cases where the capacity requirements are small com-
pared to the capacity itself. (Eventually, as C and 

grow large, these policies become asymptotically opti-
mal in the sense of Propositions 5 to 7.)
The last three tables illustrate that static pricing is

close to optimal in problem instances that are either
very under- or overloaded, and that the effect of
dynamic pricing, either through the optimal policy
(DP) or the DynPrice heuristic, is most pronounced
when �" is close to 1. This is intuitive: When �"� 1,
the system’s capacity far exceeds the nominal require-
ment under the prices that maximize revenues per
unit time (implemented in RevMax), and thus one
would expect that the static pricing heuristics RevMax
and Fluid to be close to optimal. In contrast, if �"� 1,
the system’s capacity is too low, and the static prices
implemented through the Fluid heuristic are close
to optimal. Finally, we did not observe any problem
instances where the performance under the DynPrice
heuristic was worse (in a statistically significant man-
ner) than that under the LPCC or Fluid heuristics.
The narrowest gap between LPCC and DynPrice was
observed in the first row of Table 4, which, due to
the nonuniform capacity requirements, corresponds
to the problems with the lowest overall capacity in
terms of the number of sales; this is the closest to the
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setting in Cooper’s example (2002), which had low
capacity and a short selling horizon.
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