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Abstract

We consider the problem of a firm selling multiple products that consume a single

resource over a finite time period. The amount of the resource is exogenously fixed. We

analyze the difference between a dynamic pricing policy and a list price capacity control

policy. The dynamic pricing policy adjusts prices steadily resolving the underlying

problem every time step, whereas the list pricing policy sets static prices once but

controls the capacity by allowing or preventing product sales.

As steady price changes are often costly or unachievable in practice, we investigate

the question of how much riskier it is to apply a list pricing policy rather than a dy-

namic pricing policy. We conduct several numerical experiments and compare expected

revenue, standard deviation, and conditional-value-at-risk between the pricing policies.

The differences between the policies show that list pricing can be a useful strategy

when dynamic pricing is costly or impractical.
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1 Introduction

Consider the following revenue management problem: the objective of a firm is the maxi-

mization of revenues from the production and sale of multiple products. A single resource

is used for the production of the different products. A fixed capacity of this resource is

available at decision time, and it has to be consumed within a given time horizon. The firm

operates in a market which allows demand to be influenced by product pricing.

Pricing policies, which are asymptotically optimal for large growth demand and capacity,

may show different behavior in the case of scarce capacity or demand. Maglaras and

Meissner (2006) demonstrate that resolving the deterministic problem at each time step

and implementing the resulting prices often offers better results than a static policy. Given

the choice between dynamic and static pricing with capacity control, Gallego and van Ryzin

(1994); Talluri and van Ryzin (2005) show that dynamic pricing should be preferred, as price

flexibility allows for reducing simultaneously demand and increasing revenue.

However, changing the price can often involve significant costs and is not always fea-

sible, as shown in Levy et al. (1998); Bergen et al. (2003) and Netessine (2006). Different

types of costs accompanying price changes and overall costs can amount to one-fifth of

a company’s net margin, as the empirical investigation by Zbaracki et al. (2004) reveals.

Continuous price changes might not be practical in settings, such as the example of super-

markets using price tags. From this perspective, a pricing policy without any price changes

has its own benefits.

Without consideration to the costs of price changes, a dynamic pricing policy is likely to

be more profitable than a static pricing. But when the costs exceed this benefit of dynamic

pricing, static pricing becomes preferable. The cost of price changes might be less impor-

tant when a long-term average effect is taken into account. But as this cost often involves

fixed costs, they can significantly affect short-time objectives. Such circumstances can be

given when fluctuations in working capital or revenue streams are unwanted. Then both

expected revenue and downside risk must be balanced.

Thus, we need to investigate the question of how much price changes could cost a com-

pany that is still using a continuous price adaption strategy, instead of static pricing with

the capacity for an allocation policy under uncertainty. In other words, we are interested

http://www.meiss.com/
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in exploring what percent of expected revenue does a company risk using static pricing

with control over capacity allocation. We approach this question by comparing results from

numerical experiments conducted with these two different pricing policies. In particular,

we use the dynamic pricing policy and the list price capacity control policy proposed by

Maglaras and Meissner (2006). The dynamic pricing policy resolves the revenue manage-

ment problem at each time step and updates the prices. This resolving policy is the most

commonly used policy in practice. The list price capacity control policy is based on static

prices and switches off the selling of a product after a distinct time period, depending on

remaining capacity.

Using the same experimental settings, we compare the revenues that both policies achieve.

The average revenues alone do not reveal the risk involved for a strategy. Therefore, in or-

der to quantify risk we apply two additional measures on the results. Standard deviation

serves as a measure of volatility and conditional-value-at-risk serves as risk measure. These

measures help to gain more insight on when to prefer list pricing to dynamic pricing and

vice versa.

The contributions of this paper are a comparison between one common policy for dy-

namic pricing and one for static pricing under risk consideration, with an emphasis on how

the costs of price changes can affect the choice between policies.

The remainder of this paper is as follows: Section 2 reviews related literature. The

problem layout is described in Section 3. Section 4 contains a brief description of the

pricing policies evaluated in this paper. The used risk measures are explained in Section 5.

Section 6 presents and discusses numerical results in terms of these measures. Finally,

Section 7 concludes this paper.

2 Related Literature

The following are categories of related research: investigations of costs of price changes,

analyses of dynamic pricing and static pricing, and risk considerations within dynamic pric-

ing and revenue management.

The first category studies the cost of price changes by data analysis from a management

perspective. Levy et al. (1997, 1998); Bergen et al. (2003) and Zbaracki et al. (2004) explore

http://www.meiss.com/


List Pricing versus Dynamic Pricing: Impact on the Revenue Risk 4

the cost of price changes in different industries. Levy et al. (1997) analyze the data of

pricing systems of supermarket chains, derived from five different costs of price changes.

They found that if the costs of price adjustment made the adjustments unprofitable they

are not implemented. Levy et al. (1998) extend this analysis by describing the price adjust-

ment process and involved decisions in more detail. Bergen et al. (2003) emphasize that

implementing price changes is not costless and offer recommendations for a price change

strategy at the managerial level. Zbaracki et al. (2004) report on the empirical data of costs

for price adjustments. These empirical studies support the argument that the costs of price

changes should be considered when applying dynamic pricing policies.

Considering the price changing costs, Netessine (2006) analyzes the dynamic pricing

problem of a single product when only a limited number of price changes are allowed. He

considers the timing of the price changes in a deterministic environment in cases of con-

straint and unconstraint capacity. This work focuses on an analytic solution for maximum

expected revenue, whereas our paper looks at the question which price changing costs are

acceptable under downside risk.

There are several papers which analyze dynamic and static pricing policies. Gallego and

van Ryzin (1994, 1997) discuss the numerical results of static pricing in comparison to the

optimal price. They conclude that for large sized problems with known demand functions

and no constraint on price setting, there were no great benefits when using dynamic pric-

ing. Cooper (2002) and Maglaras and Meissner (2006) present results of contrasting static

and resolving pricing policies. Cooper (2002) provides an example showing that resolv-

ing policies does not necessarily lead to a better result, whereas the numerical results of

Maglaras and Meissner (2006) show that its expected revenue is superior to static pricing in

non-asymptotically settings. However, the policies generally assume a long-term perspec-

tive when studying expected revenue and a short-term view when risk sensitivity might be

more important.

The last category comprises papers which deal with risk considerations in a revenue

management setting. Feng and Xiao (1999) investigate risk in revenue management models.

They introduce a risk factor in the form of sales variations into expected revenue. Lai and Ng

(2005) present an idea based on stochastic programming for tackling risk in hotel revenue

management. They include a risk trade-off factor between expected revenue and deviation

http://www.meiss.com/
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into their stochastic network optimization model. This factor serves as a representation of

risk aversion for decision makers. Levin et al. (2008) use a penalty term for the probability

that revenues fall below a certain level. They suggest the use of their model for applications

with a focus on a revenue target, such as event management.

Weatherford (2004) proposes an expected marginal seat utility (ESMU) employing util-

ity theory to account for risk sensitivity in revenue management. Barz and Waldmann

(2007) analyze an exponential utility function in capacity control models to incorporate

risk-sensitivity. They employ a risk-sensitive Markov decision model in their approach.

Bertsimas and Thiele (2006) show robust and data-driven optimization that integrates

uncertainty into decision making. Thiele (2006) presents a robust optimization approach

to a single product pricing problem without knowing the demand function. Perakis and

Roels (2007) analyze robust capacity controls for network revenue management using the

maximin and minimax regret criteria.

Lim et al. (2008) extend their relative entropy approach from the single product, see Lim

and Shanthikumar (2007), to multi products cases and a proposed a risk-sensitive pricing

problem involving a risk sharing rule. Mitra and Wang (2005) discuss various risk indices

for risk modeling of network revenue management problems.

Lancaster (2003) emphasizes the need for risk awareness in revenue management from

the analysis of historical and ESMRb-simulated data. He advocates the introduction of risk

measures based on value- at-risk for revenue management. Therefore, he derives a value-at-

risk metric employing revenue per available seat mile (RASM). He proposed using a decision

rule by a Sharpe ratio in order to find balancing risk and return strategies for airlines to

deal with revenue volatility.

The papers which set up the last category examine specific important problems but do

not provide a comparison of static and dynamic pricing under risk issues. This paper aims

to produce such a comparison by measuring the risk inherent within these policies.

An overview of measures for risk analysis is given by Vose (2008) among others. Rock-

afellar (2007) gives a detailed discussion of the measures of deviation and of risk with

regard to optimization. Luciano et al. (2003) argue that value-at-risk (VaR) is also a suitable

risk measure for non-financial sectors. They use VaR to evaluate an inventory policy where
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the time horizon defines the period over a policy to be evaluated, and the confidence level

specifies the worst cases to be considered regarding return.

3 Problem Description

3.1 Problem Setting

Our problem setting is described as a firm using a single resource for the production of

multiple products. The number of capacity units of the single resource is denoted by C and

the number of products by n. The products are indexed by i and each product i requires

one unit of capacity. The resource must be used in a finite time horizon T , capacity cannot

be replenished and the salvage value of remaining inventory at time T is assumed to be

zero. The operating firm is assumed to be in a market with imperfect competition and can

influence the demand for each product by varying its prices.

The prices at time t ∈ [0, . . . , T ] are described by the n-dimensional vector p(t). The

corresponding demand is the n-dimensional vector λ(p(t)). The demand process is as-

sumed to be a n-dimensional non-homogenous Poisson process. Further, the feasible sets

are P ⊆ R
n for the price vectors, L = {x ≥ 0 : x = λ(p),p ∈ P} ⊆ R

n
+ and for the achievable

demand rate vectors so that λ : P → L.

L is assumed to be a convex set, the demand function regular, and the existence of a

continuous inverse demand function p(λ) with p : L → P. Thus, the expected revenue rate

can be expressed as R(λ) := λ′p(λ). We denote the transpose of a matrix x by x′. Time is

discretized in small intervals of length δt and indexed by t = 1, . . . T , so that P(product i,

arrival in [0, δt]) = λiδt + o(δt) for all i and o(x)/x → 0 as x → 0.

In a slight abuse of notation, we write λi in place of λiδt for the demand for product i.

The random demand vector ξ(t, λ) is Bernoulli with probabilities λ(t) = λ(p(t)).

3.2 Dynamic Pricing Problem

The dynamic pricing problem of Gallego and van Ryzin (1997) can be described then in the

following form (e denotes the unit vector)

max
{λ(t),t=1,...,T}



E



T∑

t=1

p(λ(t))′ξ(t;λ)


 :

T∑

t=1

e′ξ(t;λ) ≤ C a.s., λ(t) ∈ L ∀t



 . (1)
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Its associated Bellman equation for the expected revenue V(x, t) starting at period t

with x remaining units of capacity is

V(x, t) = max
λ∈L




n∑

i=1

λi[pi(λ)+ V(x − 1, t + 1)]+ (1− e′λ)V(x, t + 1)



 , (2)

with boundary conditions

V(x, T + 1) = 0;∀x and V(0, t) = 0;∀t. (3)

Equation 2 can be transformed to

V(x, t) = max
λ∈L



R(λ)−

n∑

i=1

λi∆V(x, t)



+ V(x, t + 1), (4)

where ∆V(x, t) = V(x, t + 1) − V(x − 1, t + 1) denotes the marginal value of one unit of

capacity as a function of the state (x, t). We define the aggregate rate of capacity con-

sumption ρ :=
∑n
i=1 λi. The set of achievable capacity consumption rates is then given by

R := {ρ :
∑n
i=1 λi = ρ,λ ∈ L}. We denote

Rp(ρ) :=max
λ



R(λ) :

n∑

i=1

λi = ρ,λ ∈ L



 , (5)

as maximum achievable revenue rate under the constraint that the capacity consumption

of all products is at rate ρ. Thus, Equation 4 can be rewritten as

V(x, t) = max
λ∈R

{
Rp(ρ)− ρ∆V(x, t)

}
+ V(x, t + 1). (6)

3.3 Capacity Control Problem

The capacity control problem is related to the dynamic pricing problem as discussed by

Maglaras and Meissner (2006). The price vector p is fixed now, and, thus, the demand rate

vector λ = λ(p) becomes fixed as well. In order to maximize expected revenue, the capacity

allocation to products is optimized over time, as described by Lee and Hersh (1993). The

products are assumed to be labelled such that p1 ≥ p2 ≥ . . . ≥ pn. The firm controls if a

product request i at time t is accepted which is modeled by the control ui(t). The dynamic

http://www.meiss.com/
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capacity control problem is then

max
{u(t),t=1,...,T}



E



T∑

t=1

p′ξ(t;uλ)


 :

T∑

t=1

e′ξ(t;uλ) ≤ C a.s., ui(t) ∈ [0,1] ∀t



 , (7)

where uλ denotes the vector with coordinates uiλi. The Bellman equation for the capacity

control problem is

V(x, t) = max
ui∈[0,1]




n∑

i=1

λiui[pi + V(x − 1, t + 1)]+ (1−u′λ) V(x, t + 1)



 , (8)

with the boundary conditions as given by Equation 3. Following the same steps as for the

dynamic pricing problem, we can use the marginal value of capacity ∆V and write

V(x, t) = max
ui∈[0,1]




n∑

i=1

λiuipi −u
′λ∆V(x, t)



+ V(x, t + 1) (9)

= max
ρ∈R

{
Rc(ρ)− ρ∆V(x, t)

}
+ V(x, t + 1), (10)

where ρ = u′λ and the maximum revenue rate

Rc(ρ) = max
u

{
R(uλ) : u′λ = ρ,u ∈ [0,1]n

}
,

when capacity consumption is at a rate equal to ρ.

Note that the optimal policy for dynamic pricing and the capacity control can be cal-

culated using the formulation ρ∗(x, t) = argmaxρ∈R {R(ρ) − ρ∆V(x, t)}, where R(·) is a

concave increasing revenue function.

4 Policies

This section briefly describes the two pricing policies which are investigated in Section 6.

Details about their structural properties can be found in Maglaras and Meissner (2006). We

concentrate on the main aspects of the policies for their numerical implementation.

We assume that product i requests capacity consumption at rate of ai ≥ 0 units for each

unit of demand and adapt ρ = a′λ with a = [a1, . . . , an]. Then, static pricing with capacity

http://www.meiss.com/
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constraints is described by the fluid formulation:

max
{ρ(t),t∈[0,T ]}

{∫ T

0
Rp(ρ(t))dt :

∫ T

0
ρ(t)dt ≤ C, ρ(t) ∈ R ∀t

}
. (11)

The optimal solution of (11) is consumption of capacity at the constant rate

ρ̄(t) :=min(ρ̂, C/T) ∀ t, (12)

with ρ̂ = argmaxρ{R
p(ρ)} (cf. Maglaras and Meissner, 2006). Note that C/T corresponds

to the run-out rate that depletes capacity at time T . The corresponding demand vector is

λ̄ = λp(ρ̄) and its price vector p̄ = p(λp(ρ̄)).

4.1 List-Price Capacity Control

The List-Price Capacity Control (LPCC) policy employs capacity control as explained in Sec-

tion 3.3 for the solution of Equation 12. In order to determine the control u, two steps are

implemented:

1. price with p̄ and arrange products such that p̄1/a1 ≥ p̄2/a2 ≥ · · · ≥ p̄n/an,

2. calculate ρ̄(x, t) and control by u

lpcc:





u1(0, t) = 0

u1(x, t) = 1 if x > 0

ui(x, t) =





1 if ρ̄(x, t)−
∑
j<i ajλ̄j ≥ 0

0 otherwise

for i ≥ 2.

(13)

The control excludes a product from further selling if the fluid solution for the future time

period does not allow for the selling of the product.

http://www.meiss.com/
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4.2 Resolving

The dynamic pricing strategy is based on resolving the fluid formulation at discrete time

points. This strategy can be expressed as:

resolve: λ(x, t) = λr (ρ̄(x, t)) and p(x, t) = p(λ(x, t)). (14)

This policy is often used used in practice when readjustments can be done, e.g. at weekly

intervals.

5 Risk Measures

The numerical assessment of the risk involved in the policies described in the previous

section is evaluated by standard deviation as the measure for volatility and conditional-

value-at-risk as the measure for risk.

5.1 Standard Deviation

Standard deviation measures dispersion of a random variable but is also often interpreted

as risk measure. It provides information about how strongly the random variable varies

from its expected value.

Consider a random variable X. The standard deviation is the square root of the moment-

based measure variance σ2 and it is defined as σ(X) =
√
E(X2)− E(X)2, where E denotes

the expected value of a random variable.

Standard deviation is a volatility measure and considers results that are better and

worse than expected value. Though risk is often assumed as the downside (worse than

expected) return of an applied policy, measures other than standard deviation are required

for evaluating only the downside distribution. Such measures comprise value-at-risk and

conditional-value-at-risk.

5.2 Value-at-Risk and Conditional-Value-at-Risk

Value-at-risk (VaR) has become a popular risk measure in financial areas. Given a particular

confidence level and time horizon, it measures the maximum expected loss on a portfolio
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of assets. The time horizon is chosen by the portfolio investor. Usual confidence levels are

95% or 99%. VaR lets the investor estimate the maximum loss of the portfolio in 95% or 99%

of the cases. However, VaR can be a suitable risk measure for other industrial sectors as it

is actually a percentile of a random variable that presents a distribution of returns.

Let the confidence level be denoted by 1 − α and the random variable X represents

earnings (here, lower x ∈ X means greater loss). VaR can be then defined by the α-quantile

of the random variable X with distribution function P and cumulative distribution function

Fx as

VaRα(X) = inf{x : P(X ≤ x) ≥ α} = inf{x : FX(x) ≥ α}.

The drawbacks of VaR are that it does not tell anything about the distribution of X below the

VaR of the particular confidence level 1−α and it is not a coherent risk measure. For these

reasons, conditional-value-at-risk (CVaR), also known as expected shortfall, is the preferred

measure. We use CVaR in this paper due to the first reason given above, as the latter reason

is not relevant for our evaluations.

CVaR does not have the deficiencies of VaR and can be interpreted as the expected

value, given that the return is less or equal to the VaR value. Conditional-value-at-risk can

be defined as:

CVaRα(X) = E(X|X ≤ VaRα(X)).

We follow the arguments by Luciano et al. (2003) and Lancaster (2003) for applications of

VaR in other sectors than financial. As VaR can serve as the risk measure for evaluating

policies, CVaR is useful for revenue management policies. It provides information about

the downside of achieved revenue for a given confidence and a time horizon.

6 Experiments and Results

6.1 Experimental Setup

The two different policies are evaluated in several experiments. The demand was simulated

using the same random numbers for each policy evaluation. The presented results for
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expected revenue, standard deviation and CVaR are actually averaged over 1,000 sample

evaluations of a Monte Carlo simulation.

Instead of presenting the results of both investigated policies separately, our primary

interest is in showing the differences between the results. The policy resolve is our bench-

mark. We expect that it performs better than the policy lpcc in terms of revenue as it is

able to finer adapt its prices to demand. Therefore, we present the results as differences

resolve minus lpcc. The differences are the benefit of using resolve when price changes

are costless. This benefit also determines the costs that price adjustments might not exceed

in order to prefer the policy resolve over lpcc.

We show the differences of achieved revenue and the differences of standard deviations

as well as of CVaRs of both policies: a) E(Rresolve )− E(Rlpcc ), b) σ(Rresolve )−σ(Rlpcc )

and c) CVaRα(Rresolve ) − CVaRα(Rlpcc ), where the subscript on the revenue R denotes

the policy. We use a value of α = 5% for calculation of CVaRα in our experiments. Again, it

should be mentioned that the CVaR values are not losses but revenues for the worst cases,

meaning that if the difference c) is greater than zero, resolve is less risky than lpcc.

We consider a linear demand function of the form λ(p) = Λ−Bp in the following, where

the vector Λ = (Λi) denotes the market potential for product i and the matrix B := (bij)

denotes the price and cross-price sensitivity for product i or between products i and j

respectively.

The ordinates of the presented plots are in units of percent of the maximal expected

revenue computed using (6, 10). The abscissas display the load factor ρ̂ = T(
∑n
i=1aiλ̂)/C

where λ̂ is the result of (5) without the constraint. With the linear demand, it follows that

λ̂ = argmax {λ′B−1(Λ − λ) : λ ≥ 0} = (B−1 + B−1′)−1ΛB−1. The load factor measures the

relation between demand and available capacity. The figures show an interval range of the

load factors from 0.5 (low demand, high capacity) to 4.0 (high demand, less capacity), which

might be theoretical because the demand would be better estimated in the most realistic of

scenarios.
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6.2 Experiment without Cross-Price Elasticity Effects and Uniform Capacity Con-

sumption

In order to illustrate the behavior of the different strategies, we first considered a simple

numerical example using the same setup as done by Maglaras and Meissner (2006): two

products consuming one unit of capacity per request, linear demand with Λ = [0.3; 0.1], B =

[1 0; 0 6] and T = 200 time periods. The results are shown in Figure 1.

We observe that the advantage of resolve against lpcc decreases with decreasing load

factor ρ̂ (which corresponds to an increasing capacity C) from about 5.8% to 0% of maximal

expected revenue. Further, standard deviation and CVaR demonstrate that resolve is sig-

nificantly less risky when capacity is very scarce. In simulated cases with a load factor of

ρ̂ = 4, it is about 28% of achievable revenue better than lpcc in the worst case of α = 5%.

However, this benefit diminishes with increasing capacity and the difference of CVaR5% fa-

vors neither of the strategies for ρ̂ < 1.25. The standard deviation of lpcc is actually lower

than the standard deviation of resolve for a load factor ρ̂ < 1.75. Considering the results

in asymptotical settings by Gallego and van Ryzin (1997); Maglaras and Meissner (2006),

this seems coincident.

The most interesting behavior between both policies is in the range of the load factor

between 0.75 and 1.75. Below 0.75 there is no clear difference and above 1.75 the out-

performance of resolve against lpcc grows nearly linearly with increasing load factor.

But between those values, the revenue achieved by lpcc is up to 2.2% less volatile, but on

average also 2% less than the result of resolve. The CVaR advantage of resolve depreci-

ates but is still up to 5% between 1.5 < ρ̂ < 1.75. In those scenarios, list pricing offers a

predictable revenue and risk estimation.

6.3 Experiment with Cross-Price Elasticity Effects and Uniform Capacity Con-

sumption

In order to investigate the cross-price elasticity effect, we use the same settings as before

but change the matrix B = [1 − 0.4;−0.6 6]. The result of cross-price elasticity is shown in

Figure 2.

http://www.meiss.com/
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Figure 1: Results of Experiment 1: B = [1 0; 0 6] and a = [1 1].
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Figure 2: Results of Experiment 2: B = [1 − 0.4;−0.6 6] and a = [1 1]
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Comparing Figure 1 and Figure 2, no significant differences are observable between the

examples with and the examples without cross-price sensitivity. A small distinction is iden-

tifiable in the plot of the expected revenue differences for load factors 1.0 ≤ ρ̂ ≤ 2.0 : the

advantage of resolve is slightly better in the experiment with cross-price sensitivity, even

though the conclusions of the experiment without cross-price sensitivity can be transferred

to this experiment.

6.4 Experiments with Cross-Price Elasticity Effects and Non-Uniform Capacity

Consumption

The next two examples use the same price/cross-price sensitivity matrix B = [1−0.4;−0.6 6].

Market potential and time period remain: Λ = [0.3; 0.1], T = 200. The product consump-

tion rates are a = [1 2] for the experiment presented in Figure 3 and a = [2 1] for the

experiment in Figure 4.

Generally, the results are similar to the uniform utilization of product consumption but

contain some interesting differences in CVaR.

The plots of Figure 3 reveal similar behavior in the performance differences between

both policies as in the previous results. Resolving the pricing problem at each time step has

an advantage in expected revenue for a load factor ρ̂ > 0.75, a lower deviation for ρ̂ > 2.5

and less risk for ρ̂ > 2.0. The list pricing policy yields approximately 2% less revenue for

load factor ρ̂ ≈ 1.0 but performs little better up to a load factor ρ̂ ≤ 2.5. On the other

hand, its standard deviation is less than the resolving strategy for ρ̂ ≤ 2.5. In this setting,

however, combining all three plots of Figure 3, lpcc offers a reliability that is not worse

than ≈ 2% in revenue and risk when compared with resolve for a load factor ρ̂ < 2.0. For

this, the reason is presented by the capacity consumption vector a = [1 2]; resolve cannot

achieve much better than lpcc due to the lesser impact of the cheaper product. The benefit

of operating only the higher valued product is less pronounced here.

Figure 4 with a = [2 1] illustrates this effect even more. The first product consumes

more capacity, and the difference between price per unit of capacity consumption is less

distinct than in the previous example. Not selling the first product can leave more remaining

unused capacity. Thus, the results look similar to the previous results but the outperfor-

mance of resolve is substantial for increasing load factors. The advantage of resolve
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Figure 3: Results of Experiment 3: B = [1 − 0.4;−0.6 6] and a = [1 2].
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begins at a lower load factor (ρ̂ > 1.5) with a greater ascent as is the case with a uniform

capacity consumption vector. The effect on the CVaR is also apparent. The difference in

CVaR is highest for all examples, e.g. ≈ 7% for ρ̂ = 1.5 whereas CVaR is < 5% here in the

other examples.

6.5 Discussion of Experiments

We observe that there can be significant differences between both policies, and for large

load factors resolve clearly outperforms lpcc. However, realistic scenarios are for load

factors ρ̂ = 1.0± 0.5, and the result of comparison is less clear for deriving settings when

the list pricing policy provides a benefit over the dynamic pricing policy and when price

changes are costly. We assume that there are no costs associated with the list pricing

policy, or that such costs are a base line for price adaption costs of the resolving pricing. If

the costs for price changes are greater than the presented advantage of the resolving policy

over list pricing with capacity control, then list pricing is the better policy.

Considering only load factors ρ̂ = 1.0 ± 0.5, the examples provide a lower border that

the costs of price changes should not exceed. Otherwise, the resolving policy becomes more

beneficial than the list pricing policy. For example, if the price changing costs more than

2.0% of maximum expected revenue, list pricing has an advantage in terms of expected

revenue and volatility. The list pricing policy should be preferred in such settings as when

the costs of price changes exceed this border and when risk considerations are not an issue.

This lower border is greater when risk aversion is important. It is up to 7% for load

factor ρ̂ = 1.0 ± 0.5 in the last of the examples. This is a substantial difference, as in

realistic worst case scenarios, the resolving policy is better off at 7% than list pricing with

capacity allocation control. However, this effect is caused by the product consumption

vector which is known before and provides a basis for risk estimation.

In general, for the case when capacity is scarce in relation to demand, the risk is higher

for a list pricing than a resolving policy regardless whether standard deviation or CVaR

is used as a measure. The difference declines when the available capacity increases and

as a result, the load factor decreases Again, if knowledge about the operating load factor

demand by capacity is given and there is certainty that it is only a few percentages greater
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Figure 4: Results of Experiment 4: B = [1 − 0.4;−0.6 6] and a = [2 1]
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than one, then list pricing can be the favorable policy to be taken into consideration for the

costs of price changes.

7 Conclusions

In this paper, we have presented numerical results comparing a dynamic pricing policy,

resolving the multi-product revenue management problem passing through time with a

list pricing policy controlling the selling of products. We have been interested in which

circumstances a list pricing policy might be favorable against a dynamic pricing policy when

costs for price changes will be considered. Thus, we have described the results by looking

at the differences between strategies regarding revenue, the volatility measure of standard

deviation, and the risk measure of conditional-value-of-risk. These differences between

dynamic and list pricing set the border that the costs of price changes must exceed so that

a dynamic pricing strategy is an advantage.

We have found that in cases when there is substantial sufficient capacity in relation to

demand (load factor between 0.5 and 1.5), the risk involved in the list pricing policy is

only slightly higher than using the dynamic pricing policy. But the advantage of dynamic

over list pricing policy in expected revenue, as well as in risk, increases significantly with

decreasing capacity by holding demand constant.

If capacity utilization can be well-estimated and capacity consumption of the products

is uniform, there might be a little disadvantage to choosing the list pricing policy. In our

experiments, list pricing was worse off by ca. 2% of maximal expected revenue in revenue

and risk downside risk measurement for load factor between 0.5 and 1.5. If there is confi-

dence about working in such a setting, the cost of price changes of a dynamic pricing policy

should be taken into account. These costs can be greater than the revenue disadvantage of

choosing a list pricing policy. Therefore, the right choice of policy can be affected strongly

by the costs as well as the applicability of implementing a dynamic pricing strategy.

Otherwise, if the costs of price adjustments are negligible or there is uncertainty of the

setting, applying the dynamic pricing policy is the better choice as the list pricing policy

might achieve less expected revenue and be more substantially risky in terms of maximal

expected revenue (up to 7% in our experiments).
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