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Abstract
Consider a single-leg dynamic revenue management problem with fare classes controlled
by capacity in a risk-averse setting. The revenue management strategy aims at limiting
the down-side risk, and in particular, value-at-risk. A value-at-risk optimised policy
offers an advantage when considering applications which do not allow for a large num-
ber of reiterations. They allow for specifying a confidence level regarding undesired
scenarios.

We introduce a computational method for determining policies which optimises the
value-at-risk for a given confidence level. This is achieved by computing dynamic pro-
gramming solutions for a set of target revenue values and combining the solutions in
order to attain the requested multi-stage risk-averse policy. We reduce the state space
used in the dynamic programming in order to provide a solution which is feasible and
has less computational requirements. Numerical examples and comparison with other
risk-sensitive approaches are discussed.
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1 Introduction

Revenue management deals with controlling a revenue stream resulting from selling products

using a fixed and perishable resource. The industries which use revenue management are

manifold. The most popular representatives are airlines, hotels, rental cars, and advertising.

But revenue management is also common in event management, ferry lines, retailing or

healthcare, to name a few. Talluri and van Ryzin (2005) and Chiang et al. (2007) provide

a comprehensive overview of revenue management.

The firm sells multiple products, each consuming a fixed resource with a limited capacity.

In this setting, we consider quantity-based revenue management in which a company offers

all or just a subset of all products at each point in time. There is a finite time horizon for

selling the products, as at the end of the horizon, the salvage value of the resource is zero.

The most common settings use the assumption of a risk-neutral objective. Thus, the

policy of the firm is the maximisation of the expected value of its revenue. Often, such a

risk-neutral objective is sufficient. As in most applications, such as daily operating ferry

lines, this policy is repetitively used. By the law of large numbers, using the expected value

as the objective function is then appropriate.

Nevertheless, risk neutrality may not be adequate for other industries, such as event

management, that do not support a large number of repetitions of a policy. Several scenarios

are known that argue for the considerations of risk-sensitive or risk-averse policies.

Levin et al. (2008) emphasise that, in particular, an event promoter has a high risk,

as the promoter cannot count on a large number of reiterations of events. The promoter

faces high fixed costs and predominantly has to recover them in order to avoid a possible

high loss. Financial and also strategic reasons might not allow running into negative cash,

because operational mobility might suffer.

Both Bitran and Caldentey (2003) and Weatherford (2004) provide further examples

that risk-neutral considerations are not applied for every real scenario. They report that

airline analysts show some natural risk-averse behaviours, and they overrule their revenue

management system in situations when the system recommends waiting for high-fare pas-

sengers, instead accepting low-fare passengers a few days before flight departure.

That risk-neutral and risk-sensitive policies make a difference is shown in several re-

cent papers. Barz and Waldmann (2007), Huang and Chang (2009), Koenig and Meissner

(2013a) and Koenig and Meissner (2013b) analyse both types of policies using the same un-

derlying model that is used in this paper. All four approaches analyse the effects of applying

different kinds of risk-sensitive polices, assuming various levels of risk aversion for a decision

maker. However, none of these approaches computes an optimal policy for the common risk
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measures, such as standard deviation, value-at-risk, or conditional-value-at-risk. However,

simulations can be run to determine their values for a given policy.

In this paper, we propose a method which computes a value-at-risk optimal policy. The

value-at-risk (V@R) is a common risk measure often used in finance (cf. Jorion 2006). It

measures down-side risk and is determined for a given probability level. With regard to

V@R, this probability level is often referred to a as confidence level. In our context, the

V@R is the lowest revenue which exceeds the confidence level, which is often set at 5 or 10%.

Basically, it is a quantile of the revenue distribution determined by the given confidence

level. However, V@R misses the subadditivity property (cf. Rockafellar and Uryasev 2000)

and, thus, conditional-value-at-risk has become very popular as risk measure, e.g. Yau et al.

(2011) use it for financial and operational decisions in the electricity sector.

Nevertheless, in order to find a V@R optimal policy, we take advantage of the compu-

tation of target level optimal policies as proposed by Koenig and Meissner (2013b). The

target level optimal policy can be computed for a certain target and gives information about

the probability of not achieving this target. This probability is minimised to find the best

policy. It defines a confidence level for a fixed target, which is the corresponding V@R.

Hence, our task is similar to computing a target level optimised policy, but we optimise

the threshold value instead of the percentile. We compute V@R optimal policies and their

associated confidence levels. We determine then the policy of the desired confidence level

by evaluating the confidence levels of these policies We describe in this paper how that can

be accomplished in an efficient manner.

The advantage of using V@R as a parameter to be optimised is that it is a well-known

risk measure, and it is easily interpreted by practitioners. A desired confidence level is

specified, and the V@R is returned in the monetary unit of the revenue. Other risk-sensitive

approaches often require an interpretation of an uncommon parameter to adjust the desired

level of risk preference. V@R is well established and used by risk analysts and decision

makers as standard tool not only for financial investments. The risk of a strategy pursued

by a decision maker can be assessed by a clear definable risk exposure. This enables risk

assessments and planning on an organisational level. Managers can choose their confidence

level and communicate it to upper management and investors as well.

Further, a decision maker can define the confidence level to be used for a range of

problems although the problems might differ in their settings. This is a great benefit of the

V@R approach when compared with the target level approach which might require different

target values for each problem setting.

The contribution of this paper is a novel approach in order to assess risk in a revenue

management setting. Our approach computes efficiently a value-at-risk optimal policy. To

this purpose, we introduce an innovative method in order to reduce the state space of the

http://www.meiss.com/
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method which computes a target level optimal policy. We present a simulation study which

highlights that our state space reduction still yields high accuracy for the V@R computation

even with a significant decreased number of states. In this way, we deliver also a solution

which is feasible and has less computational requirements.

The paper is structured as follows. This introduction is followed by a brief overview of

related work dealing with revenue management models incorporating risk in Section 2. In

Section 3, we continue with the description of the revenue model, which builds our basic

position. We describe the target level approach and how we use it to efficiently obtain a

V@R optimal policy. We discuss different strategies useful for numerical approximation of

such a policy. Section 4 gives a detailed overview of the numerical results and studies the

effect of numerical approximation methods. Finally, we conclude this paper in Section 5.

2 Related Work

As a starting point for our analysis we use the basic model by Lee and Hersh (1993). They

introduce the dynamic capacity control model in a risk-neutral setting. Lautenbacher and

Stidham (1999) take this model further and derive a corresponding Markov decision process.

This description as a Markov decision process is advantageous for model extensions.

First risk considerations in revenue management models are proposed by Feng and Xiao

(1999). Their model considers risk in terms of variance of sales due to changes of prices. To

this end, a penalty function reflecting this variance is incorporated in the objective function

of the model. Further, Feng and Xiao (2008) integrate expected utility theory into revenue

management models in order to support risk-sensitive decisions.

Expected utility theory as tool for risk consideration is recommended by Weatherford

(2004), as well. From a practitioner’s perspective, he criticises risk-neutral revenue man-

agement, in particular, the expected marginal seat revenue (EMSR) heuristic by Beloba

(1989), and endorses risk-averse models.

Barz and Waldmann (2007) base their risk-sensitive model on the Markov decision

process of the dynamic capacity model and expected utility theory. They integrate an

exponential utility function as the objective function into the Markov decision model. The

exponential utility function allows the use of different levels of risk sensitivity. Barz (2007)

points out the use of a utility function with an aspiration level in the same setting but

does not discuss the computation of an optimal policy for this utility function. Maximising

expected utility using an aspiration level states the same problem as done by the target

level objective which is discussed in this paper.
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Further, Gönsch and Hassler (2014) deal with finding an optimal conditional-value-at-

risk policy and derive an heuristic in which a solution of a continues knapsack problem is

required in each state of their value function.

Another way of employing expected utility theory in a revenue management context is

proposed by Lim and Shanthikumar (2007). They analyse robust and risk-sensitive control

with an exponential utility function for dynamic pricing.

Lai and Ng (2005) formulate a robust optimisation model for revenue management in

the hotel industry. Their model incorporates mean versus average deviation. Also, Ferrer

et al. (2012) propose a robust optimisation approach which includes demand uncertainty

and risk aversion for retail pricing. Mitra and Wang (2005) look at mean-variance, mean-

standard-deviation and mean-conditional-value-at-risk approach for deriving a risk-sensitive

objective function with revenue management application in traffic and networks. Koenig

and Meissner (2010) demonstrate that risk considerations might lead to different decisions

when deciding between a quantity-based and price-based revenue model.

In a recent paper, Tang et al. (2012) focus on the risk of the supply side when applying

a dynamic pricing strategy. They investigate the newsvendor problem where both yield and

demand are random.

Also applying risk considerations to the dynamic capacity model, Huang and Chang

(2009) show the effect of using a relaxed optimality condition instead of the optimal one.

They investigate model behaviour in numerical simulations and discuss results, given as

mean and standard deviation and in a ranking based on a Sharpe ratio. A related approach

is presented by Koenig and Meissner (2013a), who provide a detailed study of several risk-

averse policies for the dynamic capacity model by applying risk measures.

Regarding the use of V@R, Lancaster (2003) provides some strong arguments. He

demonstrates that risk-neutral revenue management models are vulnerable to the inaccuracy

of demand forecasts. Inspired by the V@R metric, he recommends the relative revenue

per available seat mile at risk metric. His metric measures the expected maximum of

underperformance over a time period for a given confidence level.

Finally, the idea of expanding the state spaces of revenue management models is used

by Levin et al. (2008) and Koenig and Meissner (2013b) in order to consider risk in terms

of probability for achieving a certain given revenue target. Levin et al. (2008) incorporate

risk aversion into a dynamic pricing model of perishable products by integrating constraints

into the objective function. Koenig and Meissner (2013a) use the Markov decision model

of the dynamic capacity control model and compute optimal policies for revenue targets.

Section 3 explains how to find a V@R optimal policy that can employ this model. In a

similar manner, finding a V@R optimal policy could also integrate the approach of Levin

http://www.meiss.com/
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et al. (2008) for computing the probability of achieving a desired target in the associated

context.

3 Modelling and Algorithm

In this section, we begin with a brief introduction of a well-known revenue management

problem originally stated in a risk-neutral formulation by Lee and Hersh (1993). We con-

tinue with a short summary of a recently proposed modification of this problem which leads

to a risk-sensitive model. The risk-sensitive model optimises the risk of failing a previ-

ously defined revenue target and provides a basis for the proposed computational approach

which focusses on the value-at-risk metric. The value-at-risk metric is explained, and its

computation is described in our setting.

3.1 Dynamic Capacity Control Revenue Management Problem

Lee and Hersh (1993) introduce a revenue management model often referred to as the

dynamic capacity control model. It was originally formulated for the airline industry, and

we also describe it in terms of this industry. Lautenbacher and Stidham (1999) state the

problem as a Markov decision process. Using this representation, it is more convenient

to derive risk-sensitive policies as done by Barz and Waldmann (2007) for an exponential

utility function and by Koenig and Meissner (2013b) for a target level criterion. As we

are interested in a computational approach for value-at-risk policies, we focus on dynamic

programming equations which can be derived from stating the problem as Markov decision

processes.

The model of Lee and Hersh (1993) divides the booking period for a single-leg flight

into N decision periods. The decision periods are assumed small enough so that there

is no more than one arrival in one period. The decision periods are represented by n ∈
{0, . . . , N} and 0 is the period of departure. There are k different fare classes with fares

Fi, F1 > F2 > . . . > Fk. Further, the probability prn,i denotes a request for the fare class

i in period n. Probabilities for the last decision period n = 0 are zero for all fare classes:

pr0,i = 0, meaning the last decision is made at n = 1. The probability of no request for any

class is given by prn,0 = 1−
∑k

i=1 p
r
n,i. Initial seat capacity is C, and remaining seats in time

period n are given by c ≤ C. In this model, a policy π is built from the decision rules which

decide to accept or reject a booking request given the current capacity and time. The set

of all policies is denoted by Π. The optimal risk-neutral policy π∗ ∈ Π is the policy which

achieves the maximal expected revenue V π∗
n (c) = maxπ E

(∑n
j=0 rj

)
, where rn denotes the

random variable for the gained revenue at time n when using a policy π. As Lee and Hersh

(1993) show, such an optimal policy can be computed by a dynamic programming solution:

http://www.meiss.com/


Koenig and Meissner: Value-At-Risk Optimal Policies for RM Problems 6

V π∗
n (c) =


k∑
i=0

prn,i max
a∈{0,1}

{
aFi + V π∗

n−1(c− a)
}
, n > 0, c > 0,

0 otherwise.

(1)

3.2 Target Level Objective

The risk-sensitive approach proposed by Koenig and Meissner (2013b) builds the basis for

calculating a value-at-risk optimised policy. The authors compute an optimal policy for

achieving a given target revenue. To this end, they follow a method described by White

(1988), Wu and Lin (1999) and Boda and Filar (2006). Boda and Filar (2006) describe

the latter approach as a target-percentile problem, as the percentile for a fixed target is

optimised.

First, the objective function is the probability of failing the given target revenue. Thus,

the objective function has to be minimised in order to derive the risk-sensitive policy. Sec-

ond, the Markov decision process is augmented by a further state representing the currently

remaining target to be achieved in later time steps.

We use the same notation as before and introduce a few more variables. The recent target

revenue is denoted by xn and the given target value to be achieved at N time steps to go

is xN . The value function W π
n (c, xn) := Pπ

(
(
∑n

j=0 rj) ≤ xn
)

stands for the probability of

failing a target xn, applying a policy π ∈ Π in n remaining time steps and with remaining

capacity c. The optimal policy π̃∗ = argminπW
π
N minimises the risk of not attaining the

target xN . The following dynamic programming solution computes this policy:

W π̃∗
0 (c, x0) =

1 x0 > 0,

0 otherwise,

W π̃∗
n (c, xn) =

k∑
i=0

prn,i min
a∈{0,1}

{
W π̃∗
n−1(c− a, xn − aFi)

}
. (2)

For a target level xN , we have to consider all possible realisations ending at the final time

step 0. With each ongoing time step, a part of the target value can be achieved depending

on the decision made. The new target revenue xn−1 of the next time step n− 1 is given by

the current target value minus the fare achieved in the current time step xn − aFi.
The boundary conditions for time step 0 are initialised with 1 for all positive targets

and 0 otherwise. For all fares Fi attainable in time step 1, the probability of failing is less

than 1, so their probabilities can be excluded in the sum in Equation 2. Computing W π̃∗
N

starts with initialising time step 0 and proceeds to time step N .

http://www.meiss.com/
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Our algorithm calculates the probability of accepting a seat request, which reduces

the target by the seat’s fare, and the probability of rejecting the request, which retains

the current target level. The optimal decision rule either accepts or rejects the request

depending on which event has the lower probability.

3.3 Reduction of state space

However, the computation of the dynamic programming solution requires the computation

of all cumulative rewards up to the specified target xN . As this computation of the complete

solution is very inconvenient, a more suitable way is using a grid as discussed by Boda et al.

(2004). In particular, the state space dimension which represents the target levels is reduced.

To this end, the complete range of all cumulative rewards is discretised. The interval

between 0 and the target xN is separated into m smaller intervals. Each interval spans a

width of xNm . We use yi, i ∈ {0, . . . ,m} as variables for interval boundaries, and the intervals

are [y0, y1] := [0, xNm ], [y1, y2] := [xNm , 2xNm ], . . . , [ym−1, ym] := [xN (m−1)
m , xN ]. Instead of

computing for each possible cumulative reward target x, only the upper boundaries are

taken as targets. A target value inside an interval y ∈ (yi, yi+1] is rounded to the upper

interval boundary yi+1. This boundary value yi+1 is used while approximately computing

the dynamic programming solution.

The computation of W π̃∗
n is done only with value pairs of targets yi and probabilities

W π̃∗
n (c, yi). We obtain a grid of values {(y0,W π̃∗

n (c, y0)), . . . , (ym, W
π̃∗
n (c, ym))} for c ∈

{0, . . . , C}. Using dynamic programming Equation 2, the probability values of the grid can

be updated in various ways. The simplest method is rounding occurring target values to the

upper value, thus W π̃∗
n (c, y) = W π̃∗

n (c, yj+1)∀y ∈ (yj , yj+1]. However, this is very inaccurate.

We propose using nearest neighbour or linear interpolation as both offer a more accurate

way. Nearest neighbour approximation selects the value nearest to the actual required

target value y. If the inequality |yj+1 − y| < |yj − y| is valid, the upper value on the

grid is taken W π̃∗
n (c, y) = W π̃∗

n (c, yj+1) else the lower value W π̃∗
n (c, y) = W π̃∗

n (c, yj) is

taken. Linear interpolation computes weights according to the distances between actual

value and grid values. These weights are combined for computing a value for W π̃∗
n (c, y) =

|yj+1−y|
yj+1+yj

W π̃∗
n (c, yj) +

|yj−y|
yj+1+yj

W π̃∗
n (c, yj+1).

The minimum operator of the dynamic program of Equation 2 is neutral when choosing

between an action in case of an equality. There can be several ways for achieving the

same minimum, and one of these ways should be selected. If several policies which achieve

the same probability exist, it might be beneficial to choose the policy which achieves the

highest revenue of these polices. Regarding the dynamic program, one approach is to accept

a request instead of rejecting it when the minimum operator is neutral.
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3.4 Value-at-Risk

The target level approach provides us with the means for computing a value-at-risk policy.

We explain the value-at-risk metric first and move then to the computation of a value-at-risk

optimal policy.

Given a predefined fixed confidence level, the value-at-risk metric computes the max-

imum loss that one might be exposed to. The confidence level α ∈ [0, . . . , 1] specifies a

probability level and its associated α-quantile is the value-at-risk. There is some inconsis-

tency in the nomenclature of value-at-risk in the literature (cf. Pflug and Römisch 2007a,

p57). We use the following definition of the value-at-risk:

V@Rα(Y ) = inf{u : P(Y ≤ u) ≥ α},

where Y is a random variable and P denotes a probability measure. Using this definition,

common values for α are 5 or 10 percent.

Applying the V@Rα metric to our model, we use the gained revenue rn as the random

variable and get

V@Rπα

 n∑
j=0

rj

 = inf

u : Pπ
 n∑
j=0

rj ≤ u

 ≥ α
 = inf{u : W π

n (c, u) ≥ α}, (3)

with a policy π, remaining time steps n and remaining capacity c.

As we are dealing with revenue, we are interested in finding the policy π̄∗, which has

the maximal V@Rα of all policies Π given confidence α. In other words, we are looking for

the policy π̄∗ which has the highest revenue target of all policies Π given the quantile α.

Thus, α fixes the probability of failing a target which has to be determined for every policy

π ∈ Π. The best policy π̄∗ fails with the same probability α as other policies but achieves

a higher target.

The results of Wu and Lin (1999) show that W π̃∗
N (c, xN ), as computed by Equation 2, has

the property of a cumulative distribution function of variable xN ; W π̃∗
N (c, xN ) is increasing

in xN . Thus, we can employ Equation 2 for computing the policies which optimise the

target quantiles of a range of targets. We find the optimal policy for V@Rα by computing

a range of best π̄∗ policies for a range of target values xN , and select the policy with the

lowest probability W π̃∗
N which is yet greater than or equal to α. We can find the V@Rα by

using a look-up table or in a similar way by a binary search.

The targets xN and their associated confidence level W π̃∗
N (c, xN ) can be stored in a

look-up table. The table is filled by such value pairs, whereby the accuracy of the result
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i Fi 1 ≤ n ≤ 4 5 ≤ n ≤ 11 12 ≤ n ≤ 18 19 ≤ n ≤ 25 26 ≤ n ≤ 30

1 200 0.15 0.14 0.10 0.06 0.08
2 150 0.15 0.14 0.10 0.06 0.08
3 120 0 0.16 0.10 0.14 0.14
4 80 0 0.16 0.10 0.14 0.14

Table 1: Fares and probabilities of a customer request for fare class i in time period n.

depends on the step size used and the interval boundaries used for the various values for

xN . This enables us to look up the target which achieves a quantile equal to confidence α.

Binary search looks up in a sorted sequence for an element by continually splitting the

sequence by its median and retaining only the part that the element must be contained in.

We can search the V@Rα in a similar way, as W π̃∗
N (c, xN ) is an increasing function in xN .

We start with an arbitrary target xN and decrease or increase it depending on W π̃∗
N (c, xN ).

It is also possible to apply binary search to a sequence of targets without precomputation

of a full grid. The probabilities of the targets can be computed ‘on the fly’ then. However,

the computation of a probability of a target involves the computations of probabilities

of targets lower than this target. Therefore, when no precomputation is done caching of

already calculated data should be considered in order to avoid repeated computations of

the same data.

4 Numerical Results and Discussion

We evaluated the proposed computation method by the same model introduced by Lee and

Hersh (1993). Their model serves as an example in various recent papers, cf. Barz and

Waldmann (2007), Huang and Chang (2009), Koenig and Meissner (2013a), Koenig and

Meissner (2013b). Hence, it provides a basis for a comparison of different policies. Further

results are given in the appendix of this paper.

4.1 Experiment Setup

The parameters of this model use N = 30 time periods to go before departure. At this

point in time, there is a capacity C = 10 of seats left. Four fare classes are given with the

prices F1 = 200, F2 = 150, F3 = 120, F4 = 80. The probability of request for a distinct fare

in the remaining periods are given in Table 1.

http://www.meiss.com/
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4.2 V@R Computation and Evaluation

We demonstrate a computational approach for finding optimal V@R policies for α = 5%

and α = 10% as described in the previous section. In this way, we get an achievable V@R

value, as well as its corresponding optimal policy.

Table 2 shows the results of computing for a range of possible targets the probabilities

of failing them. The underlying computation is based on computing the probability of not

achieving a target for every possible target. Thus, no grid which combined ranges of values

was used in this case. The first row of Table 2 shows each possible target in the range

between 1100 and 1345. This range is just an extract of the overall range of achievable

targets. The second row shows the probability of not achieving the target. The next seven

rows are the simulation results evaluating the policy computed for a target. Three rows

show how often a target was failed and how many seats and periods remained when a

target was reached. Four rows show the average revenue and standard deviation of two

different policies which were switched to when a target was achieved for the periods left:

the risk-neutral and the first-come-first-serve policies.

We evaluated a policy by using its decision rules in a simulation applying random arrivals

according to the probabilities of Table 1. Each simulation result was based on 1000 random

runs, and for each set of runs, the same random numbers were used. We used the decision

rule of accepting a request if the decision had no effect on the probability. Further, we

switched to the risk-neutral policy, if the V@R was attained in a simulation run.

Table 2 shows the fraction of runs which failed the corresponding target, the average and

the standard deviation over all achieved revenues. Comparison of the computed probability

and the fraction of simulation runs not reaching the target were reasonable within numerical

errors.

A possible target represents the V@Rα value and the associated probability, its α value.

We find the searched V@R5% for by looking up the α nearest to 5%, the same way it is

done for α = 10%. These determined values-at-risk are highlighted in bold face in Table

2. As the possible targets were not a continuous but a discrete domain, there were also no

continuous values for α. Thus, there is no V@R10% but a V@R10.1%, which is nearest to

10% confidence. This is the same for α = 5%, respectively, but the difference is smaller and

not visible in the table.

The effect of applying a grid is demonstrated in Table 3. The target level dimension

of the state space is reduced by lowering the grid resolution. Results of grid resolutions

of m = 10, m = 20, m = 40, m = 80 and m = 166, which is the highest grid resolution

as all possible 166 targets are considered, are compared using exemplarily the confidence

value α = 10%. The result of applying the risk-neutral policy is given for comparison. We

selected the policy with W π̃∗
N , which is nearest and greater than or equal to the desired α.
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Target value xN 1100 1110 1120 1130 1140 1150 1160 1170
W π̃∗
N 0.039 0.044 0.047 0.050 0.054 0.060 0.065 0.068

Simulation of target value policies

Failed target 0.041 0.046 0.048 0.049 0.055 0.059 0.068 0.071
Seats left (avg.) 1.071 1.003 0.924 0.883 0.840 0.770 0.703 0.666
Periods left (avg.) 9.110 8.925 8.733 8.625 8.506 8.295 8.079 7.929

Rev. (avg.) R/N 1326 1325 1324 1324 1324 1323 1324 1324
Rev. (std. dev.) R/N 171 170 168 167 167 166 165 164

Rev. (avg.) FCFS 1297 1298 1300 1300 1301 1302 1305 1306
Rev. (std. dev.) FCFS 151 150 149 149 149 148 148 147

Target value xN 1180 1190 1200 1210 1220 1230 1240 1250
W π̃∗
N 0.074 0.082 0.088 0.093 0.101 0.111 0.120 0.126

Simulation of target value policies

Failed target 0.072 0.077 0.082 0.089 0.101 0.121 0.125 0.131
Seats left (avg.) 0.626 0.570 0.517 0.489 0.461 0.409 0.363 0.338
Periods left (avg.) 7.789 7.613 7.414 7.285 7.114 6.852 6.648 6.521

Rev. (average) R/N 1325 1326 1326 1327 1327 1328 1331 1332
Rev.(std. dev.) R/N 162 162 162 160 161 162 162 162

Rev. (avg.) FCFS 1308 1310 1312 1314 1315 1318 1321 1323
Rev. (std. dev.) FCFS 147 147 148 147 149 150 151 152

Target value xN 1260 1270 1280 1290 1300 1310 1320 1330
W π̃∗
N 0.137 0.150 0.160 0.169 0.183 0.198 0.201 0.222

Simulation of target value policies

Failed target 0.140 0.151 0.165 0.173 0.183 0.195 0.203 0.209
Seats left (avg.) 0.312 0.275 0.254 0.231 0.213 0.190 0.171 0.159
Periods left (avg.) 6.372 6.113 5.919 5.806 5.585 5.336 5.202 5.085

Rev. (average) R/N 1331 1335 1335 1335 1339 1342 1343 1345
Rev.(std. dev.) R/N 166 169 172 174 176 180 182 185

Rev. (average) FCFS 1323 1326 1327 1328 1333 1335 1337 1339
Rev.(std. dev.) FCFS 156 160 163 166 168 173 176 179

Table 2: Extract of the look-up table for finding the V@R nearest to desired values 0.05
and 0.10 for α. Target levels; theoretical percentiles; achieved percentiles (failed target);
seats and periods left, averages and standard deviation of revenues running a risk-neutral
(R/N) or a first-come-first-serve (FCFS) policies when a target was reached are shown. The
results of the simulations are generated by applying the corresponding policy.
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Policy Simulation of policy

α := W π̃∗

N V@Rα V@R10% Rev. (avg.) Rev. (std.) Comp. time

Risk-neutral - - 1130 1408 203 0.002 s
FCFS - - 1110 1293 151 n/a
All targets m = 166 0.101 1220 1210 1331 152 2.633 s

Linear interpolation

m = 80 0.105 1225 1180 1336 151 3.424 s
m = 40 0.126 1250 1140 1346 154 1.723 s
m = 20 0.105 1200 1200 1361 157 0.933 s
m = 10 0.160 1200 1140 1398 188 0.497 s

Nearest neighbour

m = 80 0.119 1250 1150 1337 152 1.971 s
m = 40 0.118 1250 1110 1322 159 1.011 s
m = 20 0.199 1200 1070 1309 174 0.533 s
m = 10 0.100 1400 1130 1334 162 0.317 s

Table 3: Comparison of approximation methods by using a grid with different resolution and
interpolation. Simulation results were generated by applying the determined V@R optimal
policy. Computation time is for generating the optimal policy, it is not for running/applying
a policy in the simulations (Matlab Version 2014b running on a 1,8 GHz Intel Core i7).

The results in Table 3 show that the inaccuracy increases with decreasing grid resolution.

A lower grid resolution results in a lower accuracy of W π̃∗
N , and the determined policies π∗

do achieve their objective more imprecisely. The standard deviations, which increase with

decreasing grid resolution, emphasise this.

The times for computing the optimal policies for each grid resolution are shown as well.

The computation times are decreasing together with m. Applying linear interpolation is

computational more expensive than nearest neighbour. For our example, the computation

using linear interpolation pays off not until reducing m by a quarter compared with the full

grid solution.

Further, the simulation results demonstrated that policies which were computed by

linear interpolation with a grid are more suitable for finding a V@R optimal policy for a

desired α confidence than policies computed by the nearest neighbour method. Taking into

consideration that the state space was strongly reduced, the policies computed by linear

interpolation worked quite well with grid sizes down to m = 20.

We take a closer look at the different effects of using nearest neighbour selection or

linear interpolation in Figures 1 and 2. Both figures show on the axis of abscissae the

V@Rα and on the axis of ordinates, the corresponding confidence level α. Each depicted

graph represents the computed best α for a V@Rα or vice versa. The several graphs in the
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Figure 1: Increasing inaccuracy as effect by decreasing grid size when using nearest neigh-
bour.

figures show the effect of using different grid resolutions with nearest neighbour and linear

interpolation. Grid resolutions were the same as in Table 3: 166, 80, 40, 20, 10, and for 166,

no grid approximation was necessary.

Figure 1 makes it obvious how the accuracy decreased along with decreasing grid reso-

lution when using the nearest neighbour approximation. The graphs of m = 80 and m = 40

deviated only a little from the accurate graph of m = 166. However, the graphs of m = 20

and m = 10 deviated significantly from the accurate graph and thus, no longer provide

reasonable results. This was quite different from the use of linear interpolation.

As expected and shown in Figure 2, linear interpolation provided better approximation

results than the nearest neighbour selection. The graph of m = 80 nearly matched the

graph for accurate resolution, and the graph of m = 40 deviated only slightly from it.

The first obvious deviation came with the graph m = 20 which might be an acceptable

approximation. The graph of m = 10 deviated strongly and might no longer be a useful

approximation in practice. However, linear interpolation was significantly more accurate

than nearest neighbour and provided reasonable resolution down to ca. 1/8 of the original

and accurate resolution.
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Figure 2: Increasing inaccuracy as effect by decreasing grid size when using linear interpo-
lation.

As linear interpolation was a more accurate approximation than the nearest neighbour

selection, we focused on linear interpolation for a further investigation of the impact of grid

resolution. Figure 3 displays revenue results from 1000 simulation runs. Using different

grid sizes as before, the determined policy for α = 10% was computed and applied for

each simulation run. The axis of the abscissae is the achieved revenue, and the axis of

the ordinates is the number of counts the associated revenue was achieved. A histogram

shows for a policy of a certain grid resolution the revenue distribution. Further, the results

achieved by a risk-neutral policy are given for the purpose of comparison.

Comparing the histograms, we can see that the shape of the revenue distribution of the

risk-neutral policy differs from those of the risk-sensitive V@Rα policies for α = 10%. We

distinguish between the V@Rα used for finding a policy for α = 10% and the resulting

V@R10% measurement of the simulation runs. The histograms of the results of the policies

of grid resolutions m = 166, m = 80 and m = 40 look very similar in their general shape.

We note the peak at revenue of approximately 1250. This was expected as the polices

were optimised by ‘moving’ the V@Rα to the highest revenue (the right hand side of the

distribution) while limiting revenues which are lower the V@Rα (the left hand side of the
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Figure 3: The histograms show the effect of grid resolution on the revenue distribution of
numerical simulation. The V@R10% is given for 1000 simulation runs applying the computed
best policy for α = 10%.

distribution). However, the policies did not ‘consider’ the shape of the distribution on either

side of the V@Rα. This resulted in the appearance of the peak near the V@Rα.
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The results of grid size of m = 20 and m = 10 were quite interesting. The limited grid

resolution seemed no longer possible to ‘shift’ revenues above the V@Rα and the shape of

the revenue distributions became similar to that of the risk-neutral policy results. We can

see that the histogram of the results from the risk-neutral policy has the largest similarity

with that of the results of the policy using m = 10. There were differences which yielded

consequent different mean revenue and attained V@R10% of the simulations. The shape of

the histogram of the results of the m = 166 policy and the shape of the histogram of the

risk-neutral policy can be considered as two extremes. By decreasing the grid resolution,

the shape of a histogram alters from the one extreme to the other. Thus, the shape of the

histogram of the results of the m = 20 policy looks like the two extreme shapes merged

together.

However, the achieved V@R10% of each experiment has to be assessed with the data

of Table 3. The policies were the results of an approximation which did not allow every

possible α. The table shows that for m = 166, m = 80 and m = 20 only, the values of W π̃∗
N

were 0.101, 0.105 and 0.105, respectively, and thus close to the desired value of α = 10%.

Taking this into account, the results of the simulations were consonant with the expected

behaviour of the policies.

Hence, only a grid resolution m approximating a policy π̃∗ should be chosen which

predicts a value W π̃∗
N , which has a small difference to the desired confidence level α.

4.3 Sensitivity Analysis

This section discusses which scenario is worthwhile for considering a value-at-risk policy.

To this purpose, we ran experiments with N = 30 time periods and C = 10 initial capacity.

The time periods were divided into five parts of six successive periods of the same request

probabilities. We used three different scenarios of different fare structures, see Table 4.

The request probabilities of an experiment were generated randomly and that experiment

categorised according to its load factor ρ = 1
C

∑N
n=0

∑k
j=1 pjn. Note the experiment of

Section 4 had a load factor ρ = 1.32.

Our experiment focused on a confidence level of α = 10%. However, we accepted confi-

dence levels of α ∈ [9.5%, 10.5%] as not every confidence level was possible in an experiment

and took the average of 100 theoretically achievable confidence levels of experiments which

had a load factor ρ in the range as shown for each row. Results of an experiment were

averaged over 1000 sample runs. We worked with a full grid in our experiments.

The data of Table 4 validates the expected behaviour of value-at-risk policies π̃∗ and

risk-neutral policies π∗. A value-at-risk policy is better than a risk-neutral policy with

regard to maximising the V@R and a risk-neutral policy better with regard to maximising

the expected revenue. However, a more interesting result is how different the policies are
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V@R10% revenue
ρ ∈ π̃∗ π∗ π̃∗ π∗

Scenario S1 : F = (200, 150, 100)

[0.75, 1.00) 859.500 859.000 1256.645 1257.000
[1.00, 1.25) 1212.000 1185.000 1455.162 1474.142
[1.25, 1.50) 1406.500 1350.500 1521.533 1588.190
[1.50, 1.75) 1539.000 1491.000 1615.224 1689.613

Scenario S2 : F = (200, 150, 120, 80)

[0.75, 1.00) 771.200 770.400 1143.412 1144.273
[1.00, 1.25) 1079.100 1053.500 1327.660 1348.794
[1.25, 1.50) 1291.400 1246.600 1423.046 1486.597
[1.50, 1.75) 1422.100 1381.100 1520.656 1586.604

Scenario S3 : F = (240, 200, 160, 120, 80)

[0.75, 1.00) 888.400 886.800 1337.624 1339.100
[1.00, 1.25) 1236.400 1199.200 1546.921 1578.350
[1.25, 1.50) 1487.600 1428.400 1658.584 1738.073
[1.50, 1.75) 1670.400 1615.600 1800.850 1885.707

Table 4: Comparison of value-at-risk optimising policies π̃∗ and expected revenue optimising
policies π∗ in different scenarios and categorised according their load factors ρ.

with regard to scenarios of different load factors. Here, the observed behaviour between the

three different scenarios is similar. There are only small differences between value-at-risk

policies π̃∗ and risk-neutral policies π∗ for a load factor between [0.75, 1.00), but differences

increases with increasing load factor. For a load factor between [1.00, 1.25), the absolute

difference of the V@R values between both polices is smaller than the absolute difference

of the achieved revenues of both policies. Or in other words, one could gain more on the

bottom side than lose on the top side when hedging against risks. This is turning with

higher load factors between [1.25, 1.75). Nevertheless, the proposed value-at-risk optimising

policy seems adequate for risk-averse decision makers as companies would likely operate

with a load factor of lower than ρ = 1.25 with help of their forecasting tools.

5 Conclusions

We have developed a computational approach for finding and approximating the optimal

value-at-risk policy for a revenue management problem. The dynamic capacity control

model used is one of the quantity-based revenue management models.
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Given a confidence level specifying the value-at-risk, the proposed method computes

possible value-at-risk results leveraging target level computation and selects the best result

fitting the confidence level. In order to reduce computational effort, an approximation

method for finding an approximate optimal value-at-risk policy has been proposed.

We have evaluated the proposed approach by computing policies in numerical exper-

iments and presented how the policies compare against a risk neutral policy considering

different load factors. Our approach offers a reasonable risk-averse option in particular for

realistic load factors.

The presented methods allow for a fast computation of a good approximation of value-

at-risk optimal policies. They provide a basis for applying risk sensitivity in revenue man-

agement. However, such policies optimise for value-at-risk but, as often, at the expense of

other measures. This should be borne in mind when applying such policies in practice.

Further, a pure value-at-risk policy cannot suffice in all risk-averse scenarios and a trade-

off policy between risk and revenue might be requested. Future work could investigate the

computation of such hybrid policies which could be parametrised by confidence level and

mean revenue.

Finally, the presented computational approach aiming at value-at-risk optimal policies

could also be used for other revenue management models, such as dynamic pricing, if the

target level optimal policy is already known.
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Appendix

We conducted further experiments to evaluate the effect of a reduction of the state space.

To this purpose, we ran similar experiments, as done in Section 4.3, with different grid sizes.

In Table 5, the columns of α := W π̂∗
N represent averages of 100 theoretically achievable

confidence levels of experiments which had a load factor ρ in the range as shown for each

row. The columns of ᾱ show the confidence levels which were achieved by the numerical

experiments which used the V@Rα corresponding to that α. Again, results of an experiment

were averaged over 1000 sample runs. In order to obtain a value of ᾱ, 100 experiments were

averaged for each category of a load factor, too. For instance, the ᾱ value 0.101 given in

the first row and third column of scenario S1 is the average of 100 different experiments

which had a load factor between [0.75, 1.00), where each experiment was averaged over 1000

sample runs.

Further, Table 5 shows the results of the same experiments but with different underlying

grid sizes. We used grid sizes without any state space reduction, thus, with enough states

for every possible revenue as references. The reduction of those grid sizes is given by the

same experiments which used only 50% and 25% of those full grid sizes, respectively. The

V@Rα was computed using the full grid size.

We observed that there were only minimal differences between the theoretically achiev-

able α values and the obtained ᾱ values when the full grid sizes were used (less than 0.5

percent points) independent of the scenario and the load factor. We noticed that the differ-

ences between the predicted α values and the obtained ᾱ values increased with decreasing

grid size although there was no clear relationship between the load factors and those dif-

ferences. The maximal difference was 2 percent points for 50% of full grid size, and 3.2

percent points for 25% of full grid size, respectively.

The deviations of the α values of the different grid sizes were caused due to the fact that

the computations of the V@Rα values were done using the full grid size. Those computed

V@Rα values were then used for the lower grid sizes as well.
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full grid 50% of full grid 25% of full grid
ρ ∈ α := W π̂∗

N ᾱ α := W π̂∗
N ᾱ α := W π̂∗

N ᾱ

Scenario S1 : F = (200, 150, 100)

[0.75, 1.00) 0.102 0.101 0.138 0.146 0.154 0.158
[1.00, 1.25) 0.102 0.100 0.133 0.133 0.156 0.128
[1.25, 1.50) 0.103 0.103 0.153 0.144 0.169 0.137
[1.50, 1.75) 0.102 0.100 0.161 0.141 0.174 0.149

Scenario S2 : F = (200, 150, 120, 80)

[0.75, 1.00) 0.102 0.104 0.107 0.111 0.115 0.125
[1.00, 1.25) 0.103 0.105 0.108 0.114 0.118 0.127
[1.25, 1.50) 0.103 0.106 0.111 0.120 0.122 0.133
[1.50, 1.75) 0.102 0.106 0.114 0.124 0.125 0.142

Scenario S3 : F = (240, 200, 160, 120, 80)

[0.75, 1.00) 0.102 0.102 0.128 0.135 0.151 0.159
[1.00, 1.25) 0.103 0.102 0.123 0.126 0.141 0.132
[1.25, 1.50) 0.103 0.102 0.128 0.128 0.149 0.133
[1.50, 1.75) 0.103 0.103 0.133 0.131 0.162 0.137

Table 5: Comparison how grid size reduction affects accuracy of V@R in achieving con-
fidence level α in different scenarios: The values of α := W π̂∗

N are averaged theoretically
achievable results and ᾱ are averaged results from numerical experiments. Full grid size
means no reduction of states and 50%, 25% of full grid size represents the number of states
related to the full grid size, respectively.




