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Abstract

Consider a dynamic decision making model under risk with a fixed planning

horizon, namely the dynamic capacity control model. The model describes

a firm, operating in a monopolistic setting and selling a range of products

consuming a single resource. Demand for each product is time-dependent

and modeled by a random variable. The firm controls the revenue stream by

allowing or denying customer requests for product classes. We investigate

risk-sensitive policies in this setting, for which risk concerns are important

for many non-repetitive events and short-time considerations.

Numerically analyzing several risk-averse capacity control policies in

terms of standard deviation and conditional-value-at-risk, our results show

that only a slight modification of the risk-neutral solution is needed to

apply a risk-averse policy. In particular, risk-averse policies which deci-

sion rules are functions depending only on the marginal values of the risk-

neutral policy perform well. From a practical perspective, the advantage

is that a decision maker does not need to compute any risk-averse dy-

namic program. Risk sensitivity can be easily achieved by implementing

risk-averse functional decision rules based on a risk-neutral solution.
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1. Introduction

Consider a dynamic decision model under risk for capacity control with

a given planning time horizon. The decision maker acts on previous gained

information up to a distinct time period and estimations for future time

periods. This kind of dynamic decision making under risk is often modelled

by dynamic programming formulations. Despite some known limitations of

expected utility theory, as discussed by Schoemaker [1], the expected utility

approach is often used with dynamic programming for risk considerations.

To this end, dynamic programming uses a utility function as an objective

function, and time preferences can be included by a discount factor. The

books by Chavas [2] and Bertsekas [3] include a description of this approach

from a general perspective.

The considered capacity control model is typical, for example, in the

area of revenue management, whose use is common in industries such as

airlines, hotels or rental cars, in which a firm operates in a monopolistic

setting offering multiple products consuming a single resource. The firm

owns a fixed capacity of the resource which has to be sold over a finite

horizon. The objective of the firm is to find a policy in order to optimise

total revenue by allocating capacity to different classes of demand. Usually,

a risk-neutral optimisation objective is sufficient for revenue management

problems due to the long-term average effect in situations with repeating

decision-making processes.

There are, however, many situations when the number of reiterations

is too small (e.g., Levin et al. [4] mention an event promoter) or when con-

straints on working capital or revenue streams force the use of a dynamic

decision model with consideration of risk. Weatherford [20] observes that

analysts were uncomfortable with risk-neutral objectives and changed wait-

ing lists recommended by their revenue management systems. This means,

they applied manually their own risk-averse policy. In practice, short-time

objectives of management are a motivation for risk aversion as pointed out
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by Feng and Xiao [22]. The authors emphasise the obvious effect that uncer-

tainty in demand, forecast and capacity may lead to a significant difference

between the realised revenue and expected revenue. The practitioners’ de-

mand for risk aversion has motivated the research of risk-averse policies

and, thus, this paper, too.

Furthermore, recent approaches by Barz and Waldmann [6] and Huang

and Chang [7] propose risk-averse policies for the dynamic capacity control

model. This model is introduced a standard revenue management model

by Lee and Hersh [5] and is originally stated as a dynamic programming

formulation of a risk-neutral policy. Barz and Waldmann [6] analyse the dy-

namic capacity control model under constant absolute risk aversion using

an exponential utility as the objective function in the dynamic program-

ming recursion. Huang and Chang [7] present a policy which includes a

discount factor not in the objective but in the decision function. This dis-

count factor actually determines a risk premium for certainty of earning

revenue now, instead of under uncertainty later. This kind of risk pre-

mium is more easily communicated to practitioners than the exponential

utility function, where the computation of the risk premium requires cer-

tain knowledge about the distribution of the demand function. Huang and

Chang [7] also propose a policy considering the selling history and conduct

an extensive analysis for risk aversion, comparing standard deviations and

Sharpe ratios of risk-neutral and risk-averse policies.

Our objective is the evaluation of a set of control policies under risk

considerations. To this end, we perform an analysis of the policies by nu-

merical experiments and look at risk measures in terms of volatility by the

standard deviation and in terms of downside risk by the conditional-value-

of-risk (CVaR). We extend the analysis of Huang and Chang [7] and propose

improved policies which are also easily implemented in practice. Further-

more, we introduce a new straightforward policy which provides acceptable

results for moderate levels of risk aversion.
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The contribution of this paper is an improvement for applying risk-

averse policies. Our presented approach offers advantages for a decision

maker in terms of computational and memory requirements. The advan-

tages include less requirements on computing a risk-averse solution and

an easy and understandable way of implementing such a solution for prac-

titioners. This is achieved as only one dynamic programming solution is

needed for the application of policies of various levels of risk sensitivity.

As decision makers often have to determine their level of risk aversion

by trying out different levels in simulation, where each level requires a dy-

namic programming solution, they benefit from our method which requires

only the risk-neutral solution for each level. Also, the risk-neutral solution

can serve as a basis for applying different levels of risk sensitivity to cer-

tain instances in the same setting, i.e., when the risk level is changed from

instance to instance. Additionally, we propose a policy which allows to

switch risk aversion on or off depending on the current state of the selling

rate. This proposed approach could be used with a de(activation) of risk

aversion dependent on other possible variables, too.

In particular, we demonstrate that no extra dynamic programming re-

cursions are required for implementing decision rules for risk-sensitive

policies. The risk-averse decision can be applied directly using the results

of the risk-neutral case. In revenue management terms, it is sufficient to

use decision rules directly with the marginal capacity values of the dynamic

programming solution of the risk-neutral case.

The remainder of this paper is as follows. Section 2 gives a summary of

related work about risk considerations in revenue management context. We

describe the dynamic capacity control model, risk-neutral and risk-averse

policies associated with the model in Section 3. In Section 4, we present

the settings of the numerical experiments and the obtained risk measures

evaluating the policies. Finally, we summarise and conclude this paper in

Section 5.
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2. Related Work

A general but comprehensive coverage of revenue management is pro-

vided by Talluri and van Ryzin [8] for risk-neutral decision makers. Chiang

et al. [9] give an extensive literature overview of the field.

The first revenue management model incorporating risk, the model of

Feng and Xiao [10], considers a single-resource problem with two given

prices and allows only one price change. They define risk by sales variance

as a result of price changes. Their objective function combines expected

revenue and a weighted penalty function for sales variance. The weight

determines the level of risk aversion. Although their model is limited, the

derived result is quite intuitive: risk-averse firms switch to a lower price

sooner than risk-neutral ones. This coincides with the risk-averse policies

described in Section 3, where firms prefer to accept revenue sooner rather

than later.

Lancaster [11] looks at the risk issues in airline revenue management

from a practical perspective. He illustrates the vulnerability of revenue

management systems by analysing the volatility of historical data of rev-

enue per available seat mile. He runs several simulations which highlight

the importance of risk considerations under thin profit margins and high

uncertainty. Therefore, he recommends a relative revenue-per-available-

seat-mile-at-risk metric which integrates risk measurement with the value-

at-risk metric. This metric is the expected maximum of underperformance

over a time horizon at a chosen confidence level. To compare different

revenue management strategies, he proposes the use of the Sharpe ratio

instead of direct dual objective optimisation. This is computationally im-

practical as revenue distributions are acquired by history or simulations.

The arguments [11] for using simulations also hold for our approach of

comparing risk measures of different policies for dynamic capacity control.

Risk sensitivity is incorporated by Levin et al. [4] into a dynamic pricing

model of perishable products. Their objective function consists of maxi-
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mum expected revenue constrained by a desired minimum level of revenue

with minimum acceptable probability. This constraint is a value-at-risk for-

mulation, and their approach corresponds with maximising expected re-

turn subject to a small disaster probability. Risk aversion is introduced in

the objective function as a penalty term reflecting the probability that total

revenues fall below a certain level. Thus, the underlying utility function at

every point in time is piece-wise linear and discontinuous at the point of

the desired revenue level.

Discussing risk modelling for traffic and revenue management in net-

works, Mitra and Wang [12] analyse mean-variance, mean-standard-deviation

and mean-conditional-value-at-risk for formulation of the objective func-

tion, finally selecting standard deviation as the risk index. The impact of

several levels of risk aversion is demonstrated by an efficient frontier for a

truncated Gaussian demand distribution.

Koenig and Meissner [13] compare expected revenue and risk in terms

of standard deviation and conditional-value-at-risk of pricing policies. A

list pricing policy, following capacity control, and a dynamic pricing policy,

steadily adjusting prices, are analysed under consideration of the cost of

price changes. They show by numerical experiments under which circum-

stances a policy might be more advantageous over the other.

Robust optimisation [cf. 14] as a means for maximising over a set of

worst case outcomes under guaranteed feasibility has been used by vari-

ous authors in a revenue management context. The worst outcomes are

all the smallest revenues under feasible worst-case demand realisations.

The works of Perakis and Roels [15], Thiele [16] and Lim and Shanthiku-

mar [17] are exemplary for addressing the problem of uncertainty in the

demand function by robust optimisation. Lim and Shanthikumar [17] show

that the robust pricing problem is equivalent to a single-product revenue

management problem with an exponential utility function without model

uncertainty.
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Mulvey et al. [18] propose a different approach and consider robustness

of solutions in a set of scenarios. They introduce a penalty function to the

objective function to achieve a tradeoff between optimality and feasibility.

Following this approach, Lai and Ng [19] set up a model for hotel revenue

and formulate a tradeoff between expected revenue and mean absolute de-

viation.

Using expected utility theory in the revenue management context is en-

dorsed by Weatherford [20]. He discusses the assumption of risk-neutrality

for a standard revenue management algorithm and concludes that optimis-

ing expected utility instead of expected revenue is a suitable risk-averse

strategy. In particular, he proposes the expected marginal seat utility (EMSU)

heuristic for accounting for risk aversion instead of the expected marginal

seat revenue model (EMSR), the standard algorithms introduced by Beloba

[21].

Thus, the work of Barz and Waldmann [6] and Feng and Xiao [22] can be

considered as following the same path, employing expected utility theory

for revenue management as pointed out by Weatherford [20]. In order to

reflect a decision maker’s risk sensitivity, both papers propose the use of

an exponential utility function. Feng and Xiao [22] show the closed form

solution in this case. Barz and Waldmann [6] consider static and dynamic

capacity control models separately. In such a setting, a risk-averse policy

will accept lower prices earlier in time and in higher remaining capacity.

Barz [23] also analyses capacity control models by additive time-separable

and atemporal utility function.

Capacity control policies for make-to-order revenue management prob-

lems are addressed by Volling et al. [24]. The authors propose a two-stage

approach for capacity control in make-to-order settings. By evaluating the

risk that their policy falls below the first-come-first-served policy, they

present results for a risk-averse decision maker.

Huang and Chang [7] modify the decision function for the dynamic ca-

pacity control model in order to make it risk-sensitive in terms of mean
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versus standard deviation. The modified decision function relaxes the risk-

neutral optimal decision using a discounted marginal seat value. Moreover,

they propose a time- and seat-dependent policy which uses a hyperbolic

tangent function in order to control the discount factor regarding the num-

ber of remaining seats. As proposed by Lancaster [11], the Sharpe ratio is

here applied to rank policies regarding revenue per unit of risk, defined by

the standard deviation.

We examine the dynamic capacity policies of Barz and Waldmann [6]

and Huang and Chang [7] in Section 3. Compared with the risk neutral

policy of Lee and Hersh [5], the risk-averse policies have in common that the

acceptance of earlier certain revenue is preferred to later, possibly higher,

revenue. The risk-averse policies, however, differ in when exactly to accept,

depending on remaining capacity and time.

3. Description of Model and Policies

The capacity control model by Lee and Hersh [5] is originally stated in

the context of airline revenue management. In the risk-neutral case, the aim

of the airline is to derive an optimal policy for maximisation of expected

revenue over a booking period under assumed demand probabilities for

fare classes.

The booking period for a single-leg flight is divided into N decision pe-

riods such that, at most, one request arrives per period. The number of

booking classes is k and each accepted booking request for class i results

in revenue Fi and F1 > F2 > . . . Fk. The seat request probability is based on

a Poisson arrival process and the probability of a request of fare class i in

decision period n is pin. The probability for no booking request at all is

p0n = 1−
∑k
i=1 pin. The initial capacity of available seats is given by C and

remaining seats are denoted by c ≤ C .
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3.1. Risk-Neutral Policy

Similar to Barz and Waldmann [6], we describe the model by a finite-

state Markov decision problem. A Markov decision problem is described by

state space, action set, decision epochs, rewards and transition probabili-

ties. In our case, these are:

• State space S = {0,1, . . . , C} × {0,1, . . . , k}, where the first element

stands for the remaining seat capacity and the second element for the

fare class, with artificial fare class 0 with fare F0 = 0. A state (c, i) ∈ S
says that as c seats are remaining, we have a request for fare class i.

• Action set A(c, i) = {0,1},∀(c, i) ∈ S|c, i > 0 and A(0, i) = A(c,0) =
{0} represents the ’reject’ and ’accept’ decision for a given state.

• Decision epochs correspond to the time periods: T = {0,1, . . . ,N} with

time n ∈ T is the remaining time until end of the period, the departure

of the flight.

• Rewards rn(s, a) are defined for s ∈ S and a ∈ A by rn((c, i), a) = aFi
for n, c > 0.

• Transition probabilities are defined for (c, i), (c − a, j) ∈ S and a ∈ A
by qn((c − a, j)|(c, i), a) = pjn for n = N,N − 1, . . .0 and otherwise

qn = 0.

A decision rule dn(cn, in) = an determines if a booking request is accepted

or rejected in the state (cn, in). A policy π = {dN , dN−1, . . . d1} is built from

a sequence of decision rules. With this setting, the expected revenue for a

particular policy π starting with capacity c and request i is

VπN (c, i) = Eπc,i

 N∑
n=1

rn((cn, in), dn(cn, in))+ r0(c0, i0)

 .
The maximal expected revenue may be computed by the Bellman equation

for this problem:

V∗n (c, i) = max
a∈A(c,i)

aFi +
k∑
j=0

pjnV∗n−1(c − a, j)

 , (1)
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with V0 = r0 = 0. An associated policy π∗ is optimal and can be described

by a decision rule d∗n(c, i) as follows [see 5]

d∗n(c, i) =


1, Fi ≥

∑k
j=0 pjn(V

∗
n−1(c, j)− V∗n−1(c − 1, j))

0, otherwise.
(2)

The policy can be explained as accepting a request only if the fare Fi of

the request is greater than or equal to the expected marginal seat value

δVn−1(c) =
∑k
j=0 pjn(Vn−1(c, j)− Vn−1(c − 1, j)).

3.2. Risk-Sensitive Policies

In this section, we present several risk-sensitive policies. The first policy

was published by Barz and Waldmann [6] and uses an exponential utility

function. The two further policies were presented by Huang and Chang

[7]. One discounts the marginal seat value in the decision rule, and another

uses a time- and seat-dependent policy. The policies recursively compute

dynamic programming solutions, as the proposed decision rules depend on

the marginal seat values computed by these solutions.

We propose that it is not required to compute extra dynamic program-

ming solutions for every risk-averse decision. We further demonstrate that

the accumulated risk-averse development of the marginal seat values is not

necessary in order to apply risk aversion. Instead, we introduce risk-averse

policies which use decision rules that depend only on the marginal seat

values of the risk-neutral solution.

Finally, we show a policy which takes into consideration the state of

the ratio between remaining capacity and time periods. This policy can

be considered as a simpler but similar approach than the time- and seat-

dependent policy of Huang and Chang [7]. We compare all policies numeri-

cally in the next section.

3.2.1. Exponential Utility Function

Barz and Waldmann [6] introduce an exponential utility function and

employ the results of Howard and Matheson [25] in order to derive an opti-
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mal policy for this approach. An exponential utility function has the form

uγ(x) = − exp(−γx) with positive parameter γ determining the level of

risk aversion.

Thus, the Markov decision process is changed and the expected value of

a policy πγ = {dγn, dγn−1, . . . d
γ
1} is now

Vπ
γ

N (c, i) = Eπ
γ

(c,i)

− exp

−γ N∑
n=1

rn((cn, in), dn(cn, in))+ r0(c0, i0)

 .
The computation of the maximal expected exponential utility leads to

V∗γn (c, i) = max
a∈A(c,i)

exp(−γaFi) ·
k∑
j=0

pjnV
∗γ
n−1(c − a, j),

 (3)

and V∗γ0 (c, i) = − exp(−γV∗0 (c, i))∀(c, i) ∈ S. Corresponding optimal poli-

cies are π∗γ = {d∗γN , d
∗γ
N−1, . . . , d

∗γ
1 }. The γ-optimal policy can be derived

and results in

d∗γn (c, i) =


1, exp(−γFi) <

∑k
j=0 V

∗γ
n−1(c,j)∑k

j=0 V
∗γ
n−1(c−1,j)

0, otherwise.
(4)

A request is accepted if its utility is lower than the expected utility gain of

an additional seat.

3.2.2. Discounted Marginal Seat Value in Dynamic Programming Recursion

One of the policies which Huang and Chang [7] propose is the relaxation

of optimality for a more risk-sensitive policy πβ. They show in a numerical

experiment the behaviour of this policy in terms of mean and standard de-

viation. The policy πβ discounts the marginal seat value. Its value function

is

Vβn(c, i) =


Fi +

∑k
j=0 pjnV

β
n−1(c − 1, j) Fi ≥ β · δVβn−1

(c)∑k
j=0 pjnV

β
n−1(c, j) otherwise,

(5)

and the according policy πβ has decision rules

dβn(c, i) =


1, Fi ≥ β · δVβn−1

(c)

0, otherwise,
(6)
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where β is a discount factor which represents risk aversion and should be

chosen between 0 and 1.

3.2.3. Discounted Marginal Seat Value within Risk-Neutral Solution

Based on the previous idea, we propose using its decision rules but di-

rectly on the marginal seat values of the risk-neutral solution. Instead of

using the marginal seat value δVβ determined by the recursive value func-

tion of Equation 5, we work directly with the marginal seat value δV∗ with

a prior computed risk-neutral value function (Equation 1).

Equation 5 does not discount the value but relaxes the decision. Al-

though the recursion accumulates previous decisions, the change in the

value function Vβn(c, i) is caused by the relaxation of the current decision

itself. Hence, we take a further step forward as we use only the relaxation

and neglect the consequences of accumulation of previous decisions. Thus,

our proposed decision rules do not depend on previous ’discounted’ deci-

sions. Using the discount factor β, the value function becomes

Vβ,νn (c, i) =


Fi +

∑k
j=0 pjnV

β,ν
n−1(c − 1, j) Fi ≥ β · δV∗n−1

(c)∑k
j=0 pjnV

β,ν
n−1(c, j) otherwise.

(7)

Though the computation of the value function is stated as a dynamic pro-

gram, the application of its associated policy πβ,ν does not require this

value function. Its decision rules depend on only the risk-neutral value

function V∗n . The decision rules of πβ,ν are

dβ,νn (c, i) =


1, Fi ≥ β · δV∗n−1

(c)

0, otherwise.
(8)

It is obvious that there is no difference between the policies πβ and πβ,ν

for β = 0 (always accept) and β = 1 (risk-neutral). For other values of β,

the decision rules of both policies differ in the cases if βδV∗n−1
(c) > Fi ≥

βδVβn−1
(c). Thus, we can expect only small differences between the policies.

12



Again, note that the decisions dβ,νn do not require pre-computing any

risk-averse solution but are based on the risk-neutral one. However, the

(c, i) path may be affected by previous decisions; whether they were risk-

neutral or risk-averse based need not be known at the current state. The

risk-neutral solution is reused with different values of discount factor β in

order to consider several levels of risk aversion.

3.2.4. Selling-Rate Dependent Decisions

We consider two selling-rate dependent decisions. Basically, this kind of

policy increases the level of risk aversion if fewer than the expected number

of seats have been sold up to the current time period.

We start with the time- and seat-dependent compromise policy of Huang

and Chang [7]. It uses a hyperbolic tangent function and two variable pa-

rameter κ1 and κ2 which determine the level of risk-sensitive behaviour that

depends on the number of remaining seats before departure. The discount

factor βn(c) is computed as

βκ1,κ2
n (c) = 1

2

[
tanh

(
κ1

(
C
∑n
m=1

∑k
i=1 Fipin∑N

m=1

∑k
i=1 Fipin

+ κ2 − c
))
+ 1

]
.

This time-and seat-dependent factor can be used in either of the policies

πβ and πβ,ν which we will denote with πβκ1 ,κ2 and πβκ1 ,κ2 ,ν .

Based on this policy, we introduce a further policy which also takes into

account the selling of seats per time period. We define a function which

serves as reference if sales of seats develop as expected ’on-track’. This

function is integrated in an indicator function which helps us to find out if

the sales rate diverges from the track:

1n(c) =


1, c > C

∑n
m=1

∑k
i=1 pim∑N

m=1
∑k
i=1 pim

0, otherwise.
(9)

The indicator function is embedded into the decision rules in order to

switch on and off a discount factor according to the current state of the
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selling-rate. We define policy πβ,1 by the decision rules

dβ,1n (c, i) =


1, Fi ≥ β1n(c) · δV∗n−1

(c)

0, otherwise.
(10)

The indicator function is used as exponent: β1n(c) = β if 1n(c) = 1 and

β = 1 otherwise. This policy πβ,1 is distinguished from πβκ policies by

a hard on and off switch which is used in the decision rule. The switch

enables or disables the discounting of the marginal seat value when it is

compared with the fare prices. Again, we can apply this policy using the

marginal seat values inside a risk-sensitive recursive formulation or using

the marginal seat values of the risk-neutral solution. We consider only the

latter one already denoted πβ,1.

4. Numerical Simulation and Results

The described policies are analysed in a numerical simulation for the

purpose of comparing their performance in terms of revenue and risk. We

illustrate the performance by following the setup which is used by other

authors in order to allow better comparisons. Furthermore, we conducted

a series of experiments with different setups which are summarised in the

appendix of this paper. Too, we present the revenue distributions of a fur-

ther representative experiment in the appendix. We start with a comparison

of the policies using the recursive risk-sensitive marginal seat values and

the risk-neutral marginal seat values. As the results will show, the results

are nearly identical. Therefore, we will continue with the π .,ν policies and

compare them among themselves and with the exponential utility function

approach.

4.1. Risk Measures

We evaluate the risk involved when applying the policies in terms of

volatility and downside risk. Standard deviation is used as the measure for

volatility and conditional-value-at-risk as the measure for downside risk.
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4.1.1. Standard Deviation

Although standard deviation measures the dispersion of a random vari-

able, it is often interpreted as risk measure. It gives information about the

level of variation of a random variable around its expected value.

For a random variable X, the standard deviation is the square root of the

moment-based measure variance σ 2; it is defined as σ(X) =
√
E(X2)− E(X)2,

where E denotes the expected value of a random variable.

Standard deviation can be best considered as a volatility measure as it is

a measure of expected distance between values which are better or worse

than expected value. Therefore, it does not represent only the downside

(worse than expected) but also the upside (better than) return of an applied

policy. For this reason, we consider downside measures, such as value-at-

risk and conditional-value-at-risk, as more meaningful risk measure.

4.1.2. Value-at-Risk and Conditional-Value-at-Risk

Value-at-risk (VaR) has become very common risk measure in the finan-

cial industry, where it originated. For a given particular confidence level

and time horizon, it measures the maximum expected loss on a portfolio

of assets. The investor chooses the time horizon and a confidence level.

Common confidence levels are 95% or 99%, and VaR helps to estimate the

maximum loss of the portfolio in 95% or 99% of cases. VaR can also be

a suitable risk measure for other industrial sectors as it is actually a per-

centile of a random variable that represents a distribution of returns.

Let the confidence level be denoted by 1−α and the random variable X

represent earnings. We assume here that a lower x ∈ X means greater loss

(or less return). VaR can be defined by the α-quantile of X with distribution

function P and cumulative distribution function Fx as

VaRα(X) = inf{x : P(X ≤ x) ≥ α} = inf{x : FX(x) ≥ α}.

A disadvantage of VaR is that it does not reveal anything about the distri-

bution of X below the VaR of the particular confidence level 1−α. It is not a
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coherent risk measure. Thus, conditional-value-at-risk (CVaR), also known

as expected shortfall, is often preferred as a risk measure.

CVaR does not have the deficiencies of VaR and can be understood as

the expected value given the return is less than or equal to the VaR value.

Conditional-value-at-risk can be defined as:

CVaRα(X) = E(X|X ≤ VaRα(X)).

We follow the arguments by Luciano et al. [26], Lancaster [11] and Ahmed

et al. [27] that VaR and CVaR can be useful not only in the context of in-

vestments, but also for other applications. We consider CVaR as a useful

measure for revenue management policies as it provides information about

the downside of achieved revenue for a given confidence and a time hori-

zon.

4.2. Simulation Setup

For the illustration of the result, the setup was taken from Lee and

Hersh [5]’s example. Four booking classes were considered with fares F1 =
200, F2 = 150, F3 = 120, F4 = 80. The number of time periods to departure

was N = 30 and the initial capacity of seats is C = 10. The probabilities of

requests for each fare class and time period are listed in Table 1. For every

experiment, we run 10,000 sample runs with average revenue, standard de-

viation and conditional-value-of-risk. The random arrivals were simulated

by using a Monte Carlo approach with the probability distribution given

in Table 1. The same random data was used for each policy when poli-

cies were compared. The load factor ρ = 1
C
∑N
n=0

∑k
j=1 pjn of this setup is

1.32, which means that more seat requests are expected than available seat

capacity is available.

4.3. Results

In order to illustrate the effect of a risk-averse versus a risk-neutral

policy, we present in Figure 1 the protection levels obtained by different
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i Fi 1 ≤ n ≤ 4 5 ≤ n ≤ 11 12 ≤ n ≤ 18 19 ≤ n ≤ 25 26 ≤ n ≤ 30

1 200 0.15 0.14 0.10 0.06 0.08

2 150 0.15 0.14 0.10 0.06 0.08

3 120 0 0.16 0.10 0.14 0.14

4 80 0 0.16 0.10 0.14 0.14

Table 1: Fares and request probabilities for fare class i and time period n.

policies. The seven subfigures depict the protection levels for a given time

period and remaining inventory of seats. The numbers in the matrix are

to be interpreted as the lowest class for which requests are to be accepted,

e.g., a ’two’ means that only requests for the first and second class were

accepted. The ordinates show the remaining seats or inventory. The ab-

scissae display the remaining time periods before departure. Time period

zero of departure is on the left hand side.

The visualisation of the protection levels gives an impression of how

the risk aversion influences the optimal risk-neutral policy. The accep-

tance of booking requests of lower classes shifts to earlier time periods.

This is observable as all risk-averse policies open all four classes earlier

when remaining inventory as well as remaining time periods are consid-

ered. Figure 1(a)-(d) also illustrate differences between policies and level

of risk aversion. As the protection levels seem to shift more to the right

hand side and to the bottom, the four figures show increasing levels of risk

aversion.

Figure 1(e)-(g) display seat and inventory dependent policies. This be-

comes visible as the protection levels of the right hand and bottom side are

similar to the risk-neutral case. However, the risk-sensitiveness is observ-

able if inventory is high and remaining time periods are low.
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4.3.1. Comparison of Decision Rules Dependent on Marginal Seat Values of

Risk-Neutral and Risk-Averse Recursive Solution

The differences between applying the decision rules based on the marginal

seat values of the risk-neutral solutions and of the risk-sensitive recursive

solutions were analysed between the policies πβ and πβ,ν first. Both use

a discount factor in order to relax the decision if an arrival should be ac-

cepted or rejected. Figure 2 shows the averaged values of revenue versus

standard deviation and of revenue versus CVaR. We used α = 5% for the

CVaR computations in this paper. The policy πβ,ν slightly outperformed

policy πβ in both evaluated measures, though the difference was not re-

markable at all. This is recognisable as the graph of policy πβ,ν embeds (is

above) the graph of policy πβ. Generally, both policies could achieve nearly

the same results but responded with different sensitivity when changing

the parameter β. In order to achieve a similar average-standard-deviation

pair or a similar average-CVaR pair, the parameter β of policy πβ had to

be greater than of policy πβ,ν . In particular, this was the case with further

experiments with a high load factor.

The policies applying selling-rate decision rules are compared in Fig-

ure 3. It illustrates that the differences between the policies πβκ1 ,κ2 and

πβκ1 ,κ2 ,ν were also negligible. There is little visible difference between the

graphs. The results were analogous to those of the comparison of πβ and

πβ,ν . Similar average-standard-deviation pair or average-CVaR pairs were

achieved when the risk sensitivity parameter κ2 of policy πβκ1 ,κ2 was greater

than of policyπβκ1 ,κ2 ,ν . Further experiments with a high load factor showed

that, too.

4.3.2. Comparison of Discounted Marginal Seat Value and Selling-Rate De-

pendent Policies

We compared the discounted marginal seat value using policy πβ,ν with

the two selling-rate dependent policies πβκ1 ,κ2 ,ν and πβ,1,ν . Here, we used

πβ,ν as representative of both policies which evaluate discounted marginal
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seat values because it performed at least as well as the other. We used

πβκ1 ,κ2 ,ν as a representative of the selling-rate dependent policies πβκ1 ,κ2

and πβκ1 ,κ2 ,ν as both showed the same performance.

Figure 4(a) shows that the policies πβ,ν and πβκ1 ,κ2 ,ν had similar volatil-

ity. There is no visible difference between πβκ1 ,κ2 ,ν compared to πβ,ν in

terms of standard deviation. The second selling-rate dependent policy

πβ,1,ν that used an indicator function had a higher volatility. This volatility

became greater with increasing level of risk aversion (decreasing β). In fur-

ther experiments, the risk aversion of every policy yielded only a significant

effect for greater load factors.

The CVaR measure revealed a different result in terms of downside risk

as shown in Figure 4(b). The policy πβ,ν achieved less revenue in the worst

5% of cases than both selling-rate dependent policies, except for a high level

for risk aversion. This can be seen at the lower right hand corner of the

figure where the graph of policy πβ,1,ν decreases and crosses policy πβ,ν .

Further, policy πβκ1 ,κ2 ,ν performed well here for all level of risk sensitivity.

It outperformed policy πβ,ν . On the other hand, policy πβ,1,ν displayed

the same low risk as the other selling-rate dependent policy for moderate

risk sensitivity up to a risk aversion level of β = 0.6. Then it dropped

down significantly. This drop coincided with its behaviour for the standard

deviation. However, as a policy which just switches risk aversion on or off,

its results were very good for moderate levels of risk aversion. However,

this policy had limitations which were apparent when an increase of its risk

sensitivity did no longer affect the results.

4.3.3. Comparison of Exponential Utility and Selling-Rate Dependent Policies

Finally, we compared the selling-rate dependent policies with the policy

using the exponential utility function. This is demonstrated in Figure 5. It

is notable that there was a very similar behaviour between policies πβκ1 ,κ2 ,ν

and π∗γ . Their results differed slightly only for a high level of risk aversion.

This is observable in Figure 5(b) on the lower right hand side. Policy πβ,1,ν
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could only follow the other policies up to a certain level of risk sensitivity

as already mentioned above. In particular, policy πβ,1,ν did not performed

well for high load factors.

5. Conclusions

Several risk-averse policies for the dynamic capacity control problem

were compared with respect to mean revenue versus standard deviation

and mean revenue versus conditional-value-at-risk. We have shown that

there were only small differences between the risk-sensitive policies em-

ploying a discounted decision rule. The results in terms of the proposed

risk measures were similar and did not depend on the computation of a

complete dynamic programming solution for each level of risk aversion.

We had the same situation for the two comparable policies which used a

selling-rate dependent policy employing a hyperbolic tangent function. In

both cases, there was no advantage of computing a complete dynamic pro-

gramming solution other than the risk-neutral one.

Furthermore, we presented a new selling-rate dependent policy which

only (de)activates risk aversion depending on the current selling-rate. This

policy kept up with a previous proposed selling-rate dependent policy and

a policy using an exponential utility for a wide range of moderate levels of

risk sensitivity in terms of down-side risk. Although we used the selling-

rate as a variable for (de)activation of the risk aversion, other variables, e.g.,

external financial constraints, are feasible for its control.

Finally, we have shown that it is adequate to apply the decision rules

on the marginal seat values of the risk-neutral solution to achieve at least

similar results to policies that use decision rules based on the marginal seat

values of distinct dynamic programming solution of risk-averse policies.

From a practical point of view, the advantages are as follows. First, only

the computation of the solution of one dynamic program (the risk-neutral

solution) is needed for applying different levels of risk aversions. A practi-
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tioner can use this risk-neutral solution to experiment with different levels

of risk aversion in order to determine which level is appropriate in terms

of chosen measures. Thus, the computational effort of solving further dy-

namic programs is saved. Second, only the risk-neutral solution needs to

be stored in memory even if several levels of risk aversion have to be con-

sidered in the same problem setting, e.g., different risk levels for various

seasons. The additional storage of the risk levels is sufficient in such cases.

The benefits grow with increasing problem size. Third, risk aversion can be

easily integrated in the risk-neutral solutions in a readily understandable

way. To this end, a small modification of the decision rule of an established

risk-neutral implementation is sufficient.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 1: Protection levels generated by the different policies (inventory

on x-axis, time periods on y-axis): risk-neutral policy π∗ (a), policy using

an exponential utility π∗,γ=0.005 (b), policy with discounting on risk-neutral

solution πβ=0.8,ν (c), policy with discounting πβ=0.8 (d), policy with selling-

dependency on risk-neutral solution πβκ1=0.5,κ2=0.8,ν (e), policy with selling-

dependency πβκ1=0.5,κ2=0.8 (f), and policy with selling-rate dependent switch

on the risk-neutral solution πβ=0.8,1 (g).
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Figure 2: Comparison of the policies πβ and πβ,ν using revenue vs. stan-

dard deviation (a) and revenue vs. conditional-value-of-risk with α = 5% (b).

The value of β goes from 0.5 to 1.0 by a step size of 0.05.
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Figure 3: Comparison of the policies πβκ1 ,κ2 and πβκ1 ,κ2 ,ν using revenue

vs. standard deviation (a) and revenue vs. conditional-value-of-risk with

α = 5% (b). The value of κ1 is fixed at 0.5 and κ2 goes from 0.125 to 2.875

with step size of 0.25.
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Figure 4: Comparison of the polices πβ,ν , πβκ1 ,κ2 ,ν and πβ,1,ν using revenue

vs. standard deviation (a) and revenue vs. conditional-value-of-risk with

α = 5%. (b). Policy πβ,ν uses β ∈ [0.7, . . . ,1.0] with step size 0.05. Policy

πβκ1 ,κ2 ,ν has κ1 fixed at 0.5 and κ2 from 0.125 to 3.125 with step size 0.25.

Policy πβ,1,ν uses β ∈ [0.5, . . . ,1.0] with step size 0.05.
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Figure 5: Comparison of the policies π∗γ , πβκ1 ,κ2 ,ν and πβ,1,ν using revenue

vs. standard deviation (a) and revenue vs. conditional-value-of-risk with

α = 5% (b). Policy π∗γ has γ ∈ [0.001, . . . ,0.01] with step size 0.001.

Policy πβκ1 ,κ2 ,ν has κ1 fixed at 0.5 and κ2 from 0.125 to 3.125 with step size

0.25. Policy πβ,1,ν uses β ∈ [0.5, . . . ,1.0] with step size 0.05.
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6. Appendix

Further Numerical Results

We investigated the proposed risk-averse policies by several experiments.

We defined 12 groups which differed by their fare structures and request

probabilities. The initial capacity was C = 10 and the remaining time was

N = 30 for all experiments. Furthermore, we divided the time periods

in five equal parts which each consisted of six periods with fixed request

probabilities.

In our experiments, we generated random request probabilities for four

classes which were distinguished by their load factor, see below. A class

consisted of 100 experiments with different request probabilities. We sim-

ulated an experiment by running 1,000 sample runs with the same request

probabilities in Monte Carlo manner.

We computed a load factor ρ with the request probabilities of an exper-

iment as ρ = 1
C
∑N
n=0

∑k
j=1 pjn. An experiment was assigned to a class by

its load factor. Each class contained only experiments with load factors of

a certain range: [0.75,1.00), [1.00,1.25), [1.25,1.50) and [1.50,1.75). We

divided each range into 10 smaller intervals of size 0.025 and accepted only

10 experiments for each interval so that the distribution of the load factors

became more uniform in a class. Policies to be compared were applied to

the same sample run. Then, the results were summarised for each class.

Further, we generated experiments with three different fare structures

which we denoted as scenario. Scenario class S1 had three fares 200,150,100,

scenario class S2 had four fares 200,150,120,80 and scenario class S3 had

five fares 240,200,160,120,80.

Thus, we classified the experiments regarding scenarios on the one hand

and load factors on the other hand. Each table shown in the following

contains results of certain policies applied to a certain scenario class. The

classification regarding the load factors is shown in each table.
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Comparison of Policies Using Decision Rules Dependent on Marginal Seat

Values of Risk-Neutral and Risk-Averse Recursive Solution

The results of Table 2 to Table 4 show that there were only small dif-

ferences between the policies πβ and πβ,ν . The results of the three sce-

nario classes were analogous. The effect of using a risk-sensitive policy

became noticeable with increasing load factor. The difference between the

results of both policies was observable with an increasing load factor and

an increasing risk sensitivity given by β, too. However, the same results in

pairs of mean and standard deviation (mean and CVaR5%) could be observed

when using a greater parameter β for policy πβ than for policy πβ,ν .

Comparison of Policies Using Decision Rules with Selling-Rate Dependent on

Marginal Seat Values of Risk-Neutral and Risk-Averse Recursive Solution

We had a similar results of the experiments comparing the policies

πβκ1 ,κ2 and πβκ1 ,κ2 ,ν as with the previous comparison. The results are shown

in Table 5 to Table 7. The effect of applying the risk-averse policies became

visible with increasing the load factor, and the effect between both policies

became visible with increasing load factor and increasing risk aversion con-

trolled by κ2. We fixed κ1 at 0.5 in all experiments. The same result pairs of

mean and standard deviation (mean and CVaR5%) were obtainable by using

different κ2 parameters for the policies.

Comparison between all Policies

The results of Table 8 to Table 10 show mean, standard deviation and

CVaR5% of the policies πβ,ν , πβκ1 ,κ2 ,ν , π∗γ and πβ,1,ν , where each table

shows one of the three scenarios. As each policy had a different parameter

which controlled the level of risk-sensitivity, we chose the parameters so

that the mean revenue was nearly the same. In this manner, we were able

to compare pairs of mean and standard deviation and pairs of mean and

CVaR5% respectively. We selected a range of mean and associated values

which reflected the ‘efficient frontier’ of mean vs. CVaR5%. Thus, we in-
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creased the levels of risk aversion as long as the CVaR5% increased (and the

mean decreased).

We observed that results were similar in respect of their classification

by the load factor ranges. The performance of the policies depended on the

load factor ranges to a greater extend and on scenarios to a lesser extend.

First, we noticed that a risk-sensitive policy did not affect strongly the

results for a low load factor in the range [0.75,1.00) independent of the

scenario. The low load factors represented less requests than available

capacity. Every request could be accepted and risk considerations did not

play a role. Thus, the performance of a policy was regardless of the level

of risk sensitivity, too.

Second, we observed that the policies πβ,ν , πβκ1 ,κ2 ,ν and π∗γ performed

similar for the load factor ranges [1.00,1.25) and [1.25,1.50) independent

of the scenario. While increasing their risk-sensitive control parameters,

mean and standard deviation went down and CVaR5% went up. Differences

between the policies were generally insignificant. The greatest differences

were for a high level of risk aversion of the load factors in [1.25,1.50) in

Scenario 3: for a similar mean, policy πβκ1 ,κ2 ,ν had a had 1.7% and 2.0%

higher standard deviation than policy π∗γ and policy πβ,ν , respectively;

and policy π∗γ had 0.9% and 0.4% higher CVaR5% than policy πβ,ν and pol-

icy πβκ1 ,κ2 ,ν , respectively. For example, policy π∗γ achieved a 4.7% greater

CVaR5% at the expense of a 1.0% mean revenue with γ = 0.0048 for the load

factors in [1.25,1.50) in Scenario 3.

Third, the policy πβ,1,ν kept up with the other policies only up to a

moderate level of risk aversion for the load factor ranges [1.00,1.25) and

[1.25,1.50). For high levels of risk aversion, we could not adjust the mean

revenues of the policy πβ,1,ν to every of the mean revenues of the other

policies by modifying the parameter β. The values of β shown in the ta-

bles demonstrate how the policy πβ,1,ν came to a saturation. However, we

achieved, e.g., 4.0% greater CVaR5% at the expense of 1.1% revenue using

policy πβ,1,ν with β = 0.7 for load factors in [1.25,1.50) in Scenario 3.
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Fourth, the results of the policies for the load factors range [1.50,1.75)

showed the boundaries of the useful ranges of levels of risk aversion. The

increase of the level of risk aversion reduced the mean revenue and the

standard deviation for all policies with the exception of policy πβ,1,ν . How-

ever, the increase of the CVaR5% did not work in accordance with raising

the level of risk sensitivity in Scenarios 2 and 3. The CVaR5% increased

up to a certain level and decreased then although the level of risk aver-

sion was incremented. The differences between the policies πβ,ν , πβκ1 ,κ2 ,ν

and π∗γ were negligible. The best achieved results were a decrease of the

standard deviation by 20% accompanied by a decrease of the mean by 3.5%

(policy πβ,ν , β = 0.7, Scenario 3), and an increase of the CVaR5% by 4.9%

accompanied by a decrease of the mean by 1.9% (policy π∗γ , γ = 0.008,

Scenario 3). The policy πβ,1,ν performed comparably with the other poli-

cies up to a moderate level of risk sensitivity. For comparison, e.g., policy

πβ,1,ν achieved a reduction of the standard deviation by 7.4% and an incre-

ment of the CVaR5% by 3.1% coincided with a decrease of the mean by 0.5%

(β = 0.85, Scenario 3).

Exemplary Comparison of Risk-averse Policies’ Revenue Distribution

In order to visualise the different behaviour of the risk-averse policies,

we provide revenue distributions of an example setting in Figure 6. We

chose an experiment from Scenario class S3 with a load factor of 1.23 and

adjusted the risk levels of the policies so that their mean revenues are

similar as shown in Table 11. We observe that the distributions between

the policies πβ and πβ,ν are approximate equal and between the policies

πβκ1 ,κ2 and πβκ1 ,κ2 ,ν are equal for the adjusted risk levels. The different

CVaR5%s as given in Table 11 are observable by looking at the lower end

of the distributions, policies πβ and πβ,ν produced apparently more lower

revenues here. The higher standard deviation of policy πβ,1,ν compared to

the others is discernible, too.
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Policy πβ Policy πβ,ν
β mean std. dev. CVaR5% mean std. dev. CVaR5%

Scenario S1, ρ ∈ [0.75,1.00), mean(V∗)=1247.02

1.0 1247.30 284.09 612.72 1247.30 284.09 612.72
0.9 1246.82 282.75 612.74 1246.87 282.80 612.74
0.8 1245.55 281.23 612.75 1245.78 281.46 612.75
0.7 1243.77 279.68 612.75 1244.34 280.12 612.75
0.6 1242.43 278.74 612.75 1242.88 279.01 612.75
0.5 1242.42 278.73 612.75 1242.42 278.73 612.75

Scenario S1, ρ ∈ [1.00,1.25), mean(V∗)=1461.07

1.0 1460.79 207.99 937.54 1460.79 207.99 937.54
0.9 1457.39 198.67 946.87 1457.83 199.16 946.65
0.8 1449.29 191.61 950.74 1451.30 192.86 950.67
0.7 1438.75 186.67 952.10 1442.86 188.37 952.11
0.6 1430.13 184.46 952.25 1433.80 185.37 952.42
0.5 1428.99 184.48 951.92 1428.99 184.48 951.92

Scenario S1, ρ ∈ [1.25,1.50), mean(V∗)=1593.57

1.0 1593.75 170.70 1163.77 1593.75 170.70 1163.77
0.9 1583.60 151.54 1202.21 1586.27 154.04 1199.04
0.8 1559.59 137.74 1224.76 1568.76 141.49 1222.62
0.7 1523.82 131.83 1221.00 1543.18 134.41 1227.90
0.6 1494.17 132.75 1200.06 1511.85 132.33 1213.60
0.5 1492.04 133.30 1197.21 1492.04 133.30 1197.21

Scenario S1, ρ ∈ [1.50,1.75), mean(V∗)=1687.37

1.0 1687.08 146.79 1308.29 1687.08 146.79 1308.29
0.9 1673.52 128.78 1345.96 1678.61 131.88 1343.45
0.8 1634.69 117.25 1360.76 1656.63 122.28 1360.65
0.7 1569.62 116.14 1324.11 1615.23 116.93 1354.88
0.6 1506.92 123.63 1255.95 1550.36 119.28 1301.76
0.5 1500.16 125.14 1246.34 1500.16 125.14 1246.34

Table 2: Comparison of policies depending on marginal seat values of risk-

neutral and risk-averse recursive solution: Scenario 1
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Policy πβ Policy πβ,ν
β mean std. dev. CVaR5% mean std. dev. CVaR5%

Scenario S2, ρ ∈ [0.75,1.00), mean(V∗)=1136.90

1.0 1136.33 270.83 537.50 1136.33 270.83 537.50
0.9 1135.81 269.33 537.60 1135.81 269.32 537.60
0.8 1134.71 267.71 537.65 1134.82 267.81 537.65
0.7 1133.10 266.09 537.65 1133.37 266.34 537.65
0.6 1131.13 264.57 537.65 1131.82 265.09 537.65
0.5 1130.37 264.09 537.65 1130.60 264.21 537.65

Scenario S2, ρ ∈ [1.00,1.25), mean(V∗)=1339.89

1.0 1339.12 214.23 817.09 1339.12 214.23 817.09
0.9 1336.55 205.55 827.20 1336.63 205.65 827.12
0.8 1329.76 198.32 832.66 1330.42 198.71 833.03
0.7 1320.47 192.77 835.94 1321.61 193.33 835.91
0.6 1308.79 188.72 836.05 1312.33 189.83 836.19
0.5 1302.86 187.61 835.45 1305.49 188.00 835.88

Scenario S2, ρ ∈ [1.25,1.50), mean(V∗)=1480.69

1.0 1480.17 180.52 1031.57 1480.17 180.52 1031.57
0.9 1474.55 167.41 1055.79 1475.16 167.96 1055.82
0.8 1457.91 154.67 1078.33 1461.63 156.57 1077.48
0.7 1428.25 145.48 1089.32 1436.05 147.30 1090.43
0.6 1388.16 142.37 1073.38 1402.16 143.22 1081.45
0.5 1364.12 143.83 1052.67 1375.89 143.08 1063.33

Scenario S2, ρ ∈ [1.50,1.75), mean(V∗)=1571.84

1.0 1571.55 154.94 1187.65 1571.55 154.94 1187.65
0.9 1561.84 138.24 1220.65 1563.54 139.40 1220.35
0.8 1536.55 128.09 1233.81 1544.62 130.29 1234.12
0.7 1494.76 124.44 1222.82 1516.49 126.16 1232.72
0.6 1428.61 128.50 1164.45 1456.58 127.15 1191.23
0.5 1381.91 134.78 1108.23 1408.37 131.67 1139.30

Table 3: Comparison of policies depending on marginal seat values of risk-

neutral and risk-averse recursive solution: Scenario 2
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Policy πβ Policy πβ,ν
β mean std. dev. CVaR5% mean std. dev. CVaR5%

Scenario S3, ρ ∈ [0.75,1.00), mean(V∗)=1319.00

1.0 1319.13 328.83 603.76 1319.13 328.83 603.76
0.9 1318.66 326.85 604.04 1318.65 326.80 604.06
0.8 1317.27 324.64 604.23 1317.31 324.68 604.23
0.7 1315.28 322.48 604.27 1315.34 322.54 604.27
0.6 1312.79 320.33 604.27 1313.17 320.65 604.28
0.5 1310.28 318.57 604.29 1311.09 319.12 604.29

Scenario S3, ρ ∈ [1.00,1.25), mean(V∗)=1578.26

1.0 1577.45 272.48 925.54 1577.45 272.48 925.54
0.9 1575.10 263.11 936.31 1575.11 263.00 936.78
0.8 1567.78 253.41 945.63 1567.90 253.37 946.10
0.7 1557.01 245.01 951.25 1557.19 245.01 952.37
0.6 1543.22 238.67 954.14 1544.26 239.11 954.62
0.5 1527.66 234.15 953.81 1532.45 235.37 954.50

Scenario S3, ρ ∈ [1.25,1.50), mean(V∗)=1733.60

1.0 1733.78 230.66 1168.00 1733.78 230.66 1168.00
0.9 1729.04 216.60 1192.18 1729.28 216.84 1192.36
0.8 1713.92 203.04 1213.17 1716.30 204.51 1213.12
0.7 1686.46 191.08 1229.07 1690.58 192.84 1230.58
0.6 1647.76 184.33 1229.68 1650.97 185.39 1231.06
0.5 1594.78 183.46 1199.38 1613.39 183.81 1212.51

Scenario S3, ρ ∈ [1.50,1.75), mean(V∗)=1863.28

1.0 1863.91 202.06 1358.43 1863.91 202.06 1358.43
0.9 1854.23 181.54 1399.02 1855.78 183.05 1397.49
0.8 1827.97 166.25 1422.30 1833.99 168.69 1421.39
0.7 1785.68 158.89 1420.61 1798.76 160.90 1424.92
0.6 1729.68 160.38 1383.46 1746.32 160.70 1394.94
0.5 1636.52 169.31 1287.41 1675.66 166.16 1327.84

Table 4: Comparison of policies depending on marginal seat values of risk-

neutral and risk-averse recursive solution: Scenario 3
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Policy πβ
κ1 ,κ2 Policy πβ

κ1 ,κ2 ,ν

κ2 mean std. dev. CVaR5% mean std. dev. CVaR5%

Scenario S1, ρ ∈ [0.75,1.00), mean(V∗)=1247.02

8.0 1247.30 284.08 612.72 1247.30 284.08 612.72
4.0 1247.27 283.96 612.72 1247.27 283.96 612.72
2.0 1247.09 283.35 612.74 1247.10 283.36 612.74
1.0 1246.58 282.56 612.74 1246.60 282.58 612.74
0.5 1245.99 281.86 612.74 1246.07 281.94 612.74

Scenario S1, ρ ∈ [1.00,1.25), mean(V∗)=1461.07

8.0 1460.78 207.97 937.59 1460.78 207.97 937.59
4.0 1460.63 206.44 939.65 1460.63 206.45 939.65
2.0 1458.57 200.48 946.46 1458.75 200.75 946.21
1.0 1454.13 195.57 949.98 1454.78 196.16 949.74
0.5 1450.44 193.02 951.12 1451.47 193.77 950.95

Scenario S1, ρ ∈ [1.25,1.50), mean(V∗)=1593.57

8.0 1593.76 170.50 1164.32 1593.76 170.50 1164.32
4.0 1592.85 165.09 1178.36 1592.93 165.29 1178.01
2.0 1581.35 150.39 1212.34 1583.36 152.16 1208.95
1.0 1564.71 142.50 1224.79 1569.59 144.68 1222.63
0.5 1553.61 139.38 1226.14 1560.56 141.90 1225.56

Scenario S1, ρ ∈ [1.50,1.75), mean(V∗)=1687.37

8.0 1687.07 146.63 1308.97 1687.07 146.63 1308.97
4.0 1684.93 140.45 1329.29 1685.42 140.87 1328.34
2.0 1661.69 127.94 1357.65 1669.66 130.65 1355.93
1.0 1631.60 123.50 1353.94 1645.43 126.32 1356.71
0.5 1612.33 122.61 1343.58 1628.99 125.27 1349.43

Table 5: Comparison of policies with decisions using selling-rate depending

on marginal seat values of risk-neutral and risk-averse recursive solution:

Scenario 1
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Policy πβ
κ1 ,κ2 Policy πβ

κ1 ,κ2 ,ν

κ2 mean std. dev. CVaR5% mean std. dev. CVaR5%

Scenario S2, ρ ∈ [0.75,1.00), mean(V∗)=1136.90

8.0 1136.33 270.83 537.50 1136.33 270.83 537.50
4.0 1136.33 270.65 537.53 1136.33 270.65 537.53
2.0 1136.08 269.94 537.56 1136.08 269.95 537.56
1.0 1135.60 268.96 537.64 1135.62 269.00 537.64
0.5 1134.99 268.16 537.65 1135.05 268.23 537.65

Scenario S2, ρ ∈ [1.00,1.25), mean(V∗)=1339.89

8.0 1339.13 214.19 817.16 1339.13 214.19 817.16
4.0 1339.05 212.42 819.80 1339.05 212.42 819.78
2.0 1336.68 206.04 828.50 1336.78 206.22 828.34
1.0 1331.88 200.64 833.40 1332.54 201.19 832.92
0.5 1327.96 197.91 834.69 1329.05 198.69 834.30

Scenario S2, ρ ∈ [1.25,1.50), mean(V∗)=1480.69

8.0 1480.14 180.47 1031.74 1480.14 180.47 1031.74
4.0 1479.56 176.46 1043.79 1479.57 176.53 1043.53
2.0 1469.10 163.83 1074.47 1471.28 165.42 1071.33
1.0 1451.58 155.08 1087.28 1456.06 157.14 1085.43
0.5 1439.21 151.99 1088.64 1445.02 154.06 1088.01

Scenario S2, ρ ∈ [1.50,1.75), mean(V∗)=1571.84

8.0 1571.53 154.86 1187.88 1571.53 154.86 1187.88
4.0 1570.24 149.92 1204.56 1570.50 150.17 1203.89
2.0 1553.90 139.43 1229.45 1558.50 140.89 1228.69
1.0 1524.31 134.61 1225.58 1535.24 136.87 1228.07
0.5 1505.45 133.43 1215.89 1518.38 135.79 1220.73

Table 6: Comparison of policies with decisions using selling-rate depending

on marginal seat values of risk-neutral and risk-averse recursive solution:

Scenario 2
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Policy πβ
κ1 ,κ2 Policy πβ

κ1 ,κ2 ,ν

κ2 mean std. dev. CVaR5% mean std. dev. CVaR5%

Scenario S3, ρ ∈ [0.75,1.00), mean(V∗)=1319.00

8.0 1319.13 328.83 603.76 1319.13 328.83 603.76
4.0 1319.15 328.63 603.79 1319.15 328.63 603.79
2.0 1318.86 327.53 603.96 1318.86 327.53 603.96
1.0 1318.12 326.01 604.07 1318.16 326.09 604.07
0.5 1317.35 324.99 604.14 1317.47 325.13 604.14

Scenario S3, ρ ∈ [1.00,1.25), mean(V∗)=1578.26

8.0 1577.44 272.37 925.79 1577.44 272.37 925.79
4.0 1577.23 270.16 929.51 1577.23 270.16 929.51
2.0 1574.36 261.78 940.96 1574.47 262.01 940.79
1.0 1567.84 254.07 948.57 1568.39 254.65 948.26
0.5 1562.70 249.88 951.23 1563.73 250.85 950.75

Scenario S3, ρ ∈ [1.25,1.50), mean(V∗)=1733.60

8.0 1733.76 230.52 1168.36 1733.76 230.52 1168.36
4.0 1733.07 225.93 1180.62 1733.10 226.04 1180.31
2.0 1722.49 212.04 1212.66 1724.38 213.52 1210.24
1.0 1701.15 201.41 1229.16 1706.02 203.61 1227.25
0.5 1686.68 196.75 1232.66 1693.36 199.55 1231.49

Scenario S3, ρ ∈ [1.50,1.75), mean(V∗)=1863.28

8.0 1863.91 201.92 1358.94 1863.91 201.92 1358.94
4.0 1862.29 195.44 1378.36 1862.46 195.93 1377.02
2.0 1842.83 180.24 1413.19 1847.55 182.57 1411.08
1.0 1807.31 173.68 1410.87 1820.13 176.82 1413.72
0.5 1781.82 172.53 1397.68 1798.00 175.13 1403.50

Table 7: Comparison of policies with decisions using selling-rate depending

on marginal seat values of risk-neutral and risk-averse recursive solution:

Scenario 3
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mean std. dev. CVaR5% mean std. dev. CVaR5%

Sc
en

ar
io
S1

,ρ
∈
[0
.7

5
,1
.0

0
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1247.30 284.09 612.72 8.000 1247.30 284.08 612.72
0.950 1247.14 283.39 612.74 4.000 1247.27 283.96 612.72
0.900 1246.87 282.80 612.74 2.000 1247.10 283.36 612.74
0.850 1246.36 282.12 612.74 1.500 1246.95 283.05 612.74
0.800 1245.78 281.46 612.75 1.000 1246.60 282.58 612.74
γ Policy π∗γ β Policy πβ,1,ν
0.0001 1247.31 284.04 612.72 1.000 1247.30 284.09 612.72
0.0010 1247.21 283.64 612.74 0.900 1247.27 284.05 612.72
0.0030 1246.95 282.91 612.74 0.700 1247.20 283.98 612.72
0.0040 1246.74 282.62 612.74 0.600 1247.20 283.98 612.72
0.0080 1245.90 281.62 612.74 0.500 1247.20 283.98 612.72

Sc
en

ar
io
S1

,ρ
∈
[1
.0

0
,1
.2

5
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1460.79 207.99 937.54 8.000 1460.78 207.97 937.59
0.950 1459.80 203.05 943.18 3.000 1460.19 204.28 942.64
0.920 1458.72 200.64 945.51 2.000 1458.75 200.75 946.21
0.890 1457.23 198.36 947.21 1.500 1457.04 198.55 948.09
0.850 1454.86 195.85 949.05 1.000 1454.78 196.16 949.74
γ Policy π∗γ β Policy πβ,1,ν
0.0001 1460.80 207.71 938.04 1.000 1460.79 207.99 937.54
0.0020 1459.61 202.20 944.58 0.950 1460.42 205.90 941.06
0.0030 1458.62 200.11 947.06 0.800 1459.51 204.16 943.37
0.0040 1457.21 197.99 948.87 0.700 1459.23 204.04 943.37
0.0060 1454.65 195.42 950.50 0.500 1459.13 204.00 943.35

Sc
en

ar
io
S1

,ρ
∈
[1
.2

5
,1
.5

0
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1593.75 170.70 1163.77 8.000 1593.76 170.50 1164.32
0.950 1591.59 161.87 1182.67 4.500 1593.39 167.32 1173.02
0.900 1586.27 154.04 1199.04 2.500 1587.43 156.05 1200.04
0.875 1582.42 150.30 1207.14 2.000 1583.36 152.16 1208.95
0.825 1573.98 144.25 1218.02 1.500 1577.66 148.14 1217.23
γ Policy π∗γ β Policy πβ,1,ν
0.001 1593.37 166.33 1174.55 1.000 1593.75 170.70 1163.77
0.002 1592.09 162.13 1185.38 0.950 1592.44 164.27 1180.38
0.004 1586.81 153.86 1205.71 0.850 1586.13 156.04 1201.75
0.005 1583.60 150.77 1212.33 0.800 1583.02 154.16 1207.13
0.007 1576.50 145.56 1222.59 0.500 1578.11 153.71 1208.02

Sc
en

ar
io
S1

,ρ
∈
[1
.5

0
,1
.7

5
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1687.08 146.79 1308.29 8.000 1687.07 146.63 1308.97
0.950 1684.41 138.22 1328.55 5.000 1686.70 143.95 1318.78
0.900 1678.61 131.88 1343.45 3.000 1681.25 136.51 1341.55
0.850 1669.69 126.75 1353.94 2.000 1669.66 130.65 1355.93
0.775 1648.12 120.25 1363.03 1.000 1645.43 126.32 1356.71
γ Policy π∗γ β Policy πβ,1,ν
0.0001 1687.07 146.40 1309.72 1.000 1687.08 146.79 1308.29
0.0030 1684.86 138.38 1334.35 0.950 1685.80 142.06 1324.31
0.0060 1677.53 131.71 1354.20 0.850 1677.82 135.75 1345.26
0.0080 1668.97 128.09 1362.04 0.800 1671.52 133.98 1350.77
0.0120 1645.53 122.58 1364.19 0.500 1643.89 135.71 1337.44

Table 8: Comparison of four risk-sensitive policies: Scenario 1
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mean std. dev. CVaR5% mean std. dev. CVaR5%

Sc
en

ar
io
S2

,ρ
∈
[0
.7

5
,1
.0

0
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1136.33 270.83 537.50 8.000 1136.33 270.83 537.50
0.950 1136.18 270.06 537.56 4.000 1136.33 270.65 537.53
0.900 1135.81 269.32 537.60 3.000 1136.29 270.44 537.53
0.850 1135.42 268.60 537.64 2.000 1136.08 269.95 537.56
0.800 1134.82 267.81 537.65 1.000 1135.62 269.00 537.64
γ Policy π∗γ β Policy πβ,1,ν
0.0001 1136.33 270.74 537.53 1.000 1136.33 270.83 537.50
0.0020 1136.07 269.65 537.63 0.900 1136.28 270.70 537.50
0.0030 1135.81 269.19 537.64 0.800 1136.25 270.64 537.52
0.0050 1135.30 268.39 537.65 0.700 1136.24 270.62 537.52
0.0080 1134.51 267.46 537.65 0.500 1136.24 270.62 537.52

Sc
en

ar
io
S2

,ρ
∈
[1
.0

0
,1
.2

5
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1339.12 214.23 817.09 8.000 1339.13 214.19 817.16
0.950 1338.47 209.66 823.10 4.000 1339.05 212.42 819.78
0.900 1336.63 205.65 827.12 2.000 1336.78 206.22 828.34
0.800 1330.42 198.71 833.03 1.000 1332.54 201.19 832.92
0.700 1321.61 193.33 835.91 0.100 1325.68 196.61 835.25
γ Policy π∗γ β Policy πβ,1,ν
0.0001 1339.11 213.91 817.57 1.000 1339.12 214.23 817.09
0.0010 1338.73 210.50 822.59 0.950 1338.67 211.51 821.98
0.0040 1334.51 202.46 832.07 0.750 1336.60 208.24 827.17
0.0080 1328.50 197.34 835.37 0.600 1336.10 208.06 827.16
0.0140 1320.96 193.39 836.38 0.500 1336.06 208.05 827.18

Sc
en

ar
io
S2

,ρ
∈
[1
.2

5
,1
.5

0
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1480.17 180.52 1031.57 8.000 1480.14 180.47 1031.74
0.950 1478.86 174.08 1044.28 4.000 1479.57 176.53 1043.53
0.900 1475.16 167.96 1055.82 2.500 1475.15 169.01 1062.84
0.780 1457.65 154.58 1080.64 1.000 1456.06 157.14 1085.43
0.700 1436.05 147.30 1090.43 0.250 1439.43 152.76 1088.08
γ Policy π∗γ β Policy πβ,1,ν
0.000 1480.15 180.19 1032.48 1.000 1480.17 180.52 1031.57
0.002 1478.51 173.03 1050.85 0.900 1477.68 172.92 1053.08
0.003 1476.49 169.24 1060.08 0.850 1474.70 169.51 1063.54
0.008 1455.83 154.66 1088.70 0.600 1457.05 163.66 1076.43
0.013 1435.27 148.62 1091.91 0.500 1456.64 163.73 1076.08

Sc
en

ar
io
S2

,ρ
∈
[1
.5

0
,1
.7

5
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1571.55 154.94 1187.65 8.000 1571.53 154.86 1187.88
0.950 1569.05 146.01 1206.70 4.000 1570.50 150.17 1203.89
0.900 1563.54 139.40 1220.35 3.000 1567.63 146.01 1215.88
0.800 1544.62 130.29 1234.12 1.500 1549.56 138.82 1230.50
0.700 1516.49 126.16 1232.72 0.500 1518.38 135.79 1220.73
γ Policy π∗γ β Policy πβ,1,ν
0.0001 1571.57 154.62 1188.44 1.000 1571.55 154.94 1187.65
0.0040 1567.57 143.40 1219.30 0.900 1568.64 148.23 1209.09
0.0050 1565.49 141.30 1224.70 0.850 1566.59 147.08 1214.41
0.0100 1546.03 134.10 1237.46 0.700 1549.29 145.78 1218.15
0.0150 1517.10 130.41 1229.56 0.500 1526.93 149.13 1197.95

Table 9: Comparison of four risk-sensitive policies: Scenario 2
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mean std. dev. CVaR5% mean std. dev. CVaR5%

Sc
en

ar
io
S3

,ρ
∈
[0
.7

5
,1
.0

0
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1319.13 328.83 603.76 8.000 1319.13 328.83 603.76
0.950 1318.95 327.73 603.97 2.000 1318.86 327.53 603.96
0.900 1318.65 326.80 604.06 1.000 1318.16 326.09 604.07
0.850 1318.10 325.78 604.14 0.500 1317.47 325.13 604.14
0.800 1317.31 324.68 604.23 0.250 1316.97 324.54 604.18
γ Policy π∗γ β Policy πβ,1,ν
0.0001 1319.13 328.66 603.79 1.000 1319.13 328.83 603.76
0.0010 1318.93 327.44 604.01 0.800 1318.95 328.39 603.78
0.0020 1318.58 326.52 604.13 0.700 1318.90 328.34 603.78
0.0030 1318.12 325.70 604.23 0.600 1318.88 328.31 603.78
0.0040 1317.57 324.94 604.25 0.500 1318.88 328.31 603.78

Sc
en

ar
io
S3

,ρ
∈
[1
.0

0
,1
.2

5
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1577.45 272.48 925.54 8.000 1577.44 272.37 925.79
0.950 1576.96 267.92 931.17 3.000 1576.81 267.43 933.63
0.850 1572.11 258.16 941.87 2.000 1574.47 262.01 940.79
0.750 1562.90 248.85 949.78 1.000 1568.39 254.65 948.26
0.680 1554.60 243.56 953.12 0.200 1560.28 248.50 952.18
γ Policy π∗γ β Policy πβ,1,ν
0.0001 1577.44 271.96 926.40 1.000 1577.45 272.48 925.54
0.0010 1576.63 266.39 934.58 0.900 1576.35 266.82 935.19
0.0020 1574.42 261.13 941.54 0.800 1573.83 262.77 941.59
0.0050 1564.74 250.33 951.58 0.600 1571.19 260.86 944.08
0.0090 1554.12 243.68 954.70 0.500 1571.03 260.84 944.07

Sc
en

ar
io
S3

,ρ
∈
[1
.2

5
,1
.5

0
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1733.78 230.66 1168.00 8.000 1733.76 230.52 1168.36
0.950 1732.55 223.57 1180.54 4.000 1733.10 226.04 1180.31
0.900 1729.28 216.84 1192.36 3.000 1731.27 221.34 1192.76
0.800 1716.30 204.51 1213.12 1.500 1716.86 208.67 1219.61
0.700 1690.58 192.84 1230.58 0.500 1693.36 199.55 1231.49
γ Policy π∗γ β Policy πβ,1,ν
0.0001 1733.75 229.89 1169.56 1.000 1733.78 230.66 1168.00
0.0010 1732.99 224.67 1181.75 0.900 1731.88 223.22 1187.14
0.0020 1730.87 218.88 1194.56 0.850 1729.70 220.31 1194.98
0.0048 1716.19 205.04 1224.07 0.700 1714.49 212.81 1214.64
0.0080 1691.68 194.88 1236.51 0.500 1700.61 211.60 1213.56

Sc
en

ar
io
S3

,ρ
∈
[1
.5

0
,1
.7

5
) β Policy πβ,ν κ2 Policy πβ

κ1 ,κ2 ,ν

1.000 1863.91 202.06 1358.43 8.000 1863.91 201.92 1358.94
0.950 1861.55 192.27 1378.62 4.000 1862.46 195.93 1377.02
0.900 1855.78 183.05 1397.49 3.000 1858.87 190.06 1393.28
0.800 1833.99 168.69 1421.39 1.500 1836.40 179.18 1415.38
0.700 1798.76 160.90 1424.92 0.500 1798.00 175.13 1403.50
γ Policy π∗γ β Policy πβ,1,ν
0.0001 1863.89 201.65 1359.42 1.000 1863.91 202.06 1358.43
0.0020 1861.08 190.81 1386.86 0.900 1859.32 190.13 1391.31
0.0040 1854.17 181.67 1409.01 0.850 1855.41 186.95 1400.29
0.0080 1827.65 170.82 1426.01 0.620 1823.45 187.13 1396.07
0.0110 1798.89 167.00 1419.71 0.500 1799.42 192.15 1369.67

Table 10: Comparison of four risk-sensitive policies: Scenario 3
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Policy mean std. dev CVaR5%

πβ=0.81 1766.68 238.45 1164.80
πβ=0.8,ν 1766.16 237.78 1165.60

πβκ1=0.5,κ2=1.35
1766.36 237.22 1185.60

πβκ1=0.5,κ2=1.25,ν 1766.36 237.22 1185.60
πβ=0.7,1,ν 1766.20 243.22 1180.00
π∗γ=0.0035 1766.16 235.65 1183.20

Table 11: Parameters and values of example of Figure 6.
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Figure 6: Example: Histrograms of the distributions of revenues achieved

by the policies πβ, πβ,ν , πβκ1 ,κ2 , πβκ1 ,κ2 ,ν , πβ,1,ν , and π∗γ (from top left to

bottom right) with risk levels adjusted for similar means.
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