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ABSTRACT

Multi-Item Supply Chain and

Revenue Management Problems

Joern Meissner

The areas of Revenue Management and Supply Chain Management represent two funda-

mental pillars for the management of industries that procure and distribute consumer

products. The former is concerned with the management of the demand processes and

the development of methodologies and systems required to support this management

function. The area of Supply Chain Management is concerned with the the design of

a supply process to match a given demand pattern as efficiently as possible. It may

therefore be viewed as the complement of the Revenue Management area.

Operations management papers have demonstrated that the operational environ-

ment and associated cost structures may have a fundamental impact on the equilibrium

behavior in the industry, in general, and the resulting price levels in particular. Little

remains known, however, about how prices should be set in a competitive environment,

in the simultaneous presence of two other major complications:

(i) time dependent demand functions and cost parameters, and

(ii) scale economies in the operational costs

Conversely, traditional inventory and procurement planning models assume that

the demand processes for the finished goods are exogenously given, when, in reality,

these demand processes can be managed by appropriate price choices, inter alia. It is of

critical importance to understand how effective replenishment strategies are affected

by pricing decisions and how replenishment strategies and pricing decisions are to be

integrated effectively.

This dissertation focuses on the following four areas of complicating factors affect-

ing the union of Supply Chain Management and Revenue Management:

http://www.meiss.com/
http://www.meiss.com/download/Joern-Meissner-PhD-Thesis.pdf


(A) Pricing Decisions. Here we distinguish between two types of settings. In the first

case, the firm operates as a monopolist or in an environment of imperfect compe-

tition, with the competitors’ prices (temporarily) fixed. In the second case, prices

need to be determined in an environment of imperfect, oligopolistic competition.

(B) Time-dependent demand functions and cost structures.

(C) Economies of scale in the operational cost. These arise, for example, from fixed

cost components in the procurement processes, i.e. production and distribution

setup costs.

(D) Capacity Limitations, i.e. limits on how many units can be produced in any given

period or, in the aggregate, over the complete planning horizon. Such capac-

ity limits often create interdependencies between different products sharing the

same production or distribution equipment.



Contents

1 Introduction 1

2 Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The multi-item model with joint setup cost (JS) . . . . . . . . . . . . . . . . . . 16

2.4 Progressive interval heuristics: worst case bounds for optimality gaps . . . 18

2.5 Solution methods for a single interval problem: polynomial and asymp-

totically optimal heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 The general (JIS) – model and numerical results . . . . . . . . . . . . . . . . . . 33

3 Probabilistic Analysis of Progressive Interval Heuristics for Multi-Item Capac-

itated Lot-Sizing Problems 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 The model and the class of progressive interval heuristics . . . . . . . . . . . 49

3.3 Almost sure asymptotic optimality . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Products with limited shelf life . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Dynamic Pricing Strategies for Multi-Product Revenue Management Problems 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Single Resource, Multi-Product Model . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Dynamic pricing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

i



4.2.2 The Single-Resource Capacity Control Problem . . . . . . . . . . . . . . 79

4.3 Analysis of the pricing and capacity control problems . . . . . . . . . . . . . 80

4.3.1 Dynamic programming formulation of the pricing problem . . . . . . 80

4.3.2 DP formulation of the capacity control problem . . . . . . . . . . . . . 82

4.3.3 A unified analysis of the pricing and capacity control problems . . . 84

4.3.4 An efficient frontier for multi-product pricing and capacity controls 87

4.4 Deterministic analysis of the multi-product pricing problem . . . . . . . . . 88

4.4.1 Solution to the deterministic multi-product pricing problem . . . . . 88

4.4.2 Heuristic policies extracted from the deterministic analysis . . . . . . 91

4.4.3 Dynamic Pricing Network Revenue Management Problems . . . . . . . 100

4.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Price Competition under Time-Varying Demands and Dynamic Lot Sizing

Costs 112

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Model and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 The best response problem under multiplicative seasonalities and con-

stant setup costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 The Best Response Problem: The General Case . . . . . . . . . . . . . . . . . . 140

5.5 The Equilibrium Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

ii



Acknowledgements

First and foremost, I am greatly indebted to my advisors, Professors Awi Federgruen

and Costis Malglaras. Their talent and drive was a fundamental component of this

dissertation, and their advice and insights about academic life was invaluable. Working

with them has transformed me not only as a researcher, but also as a person.

As my principal advisor, Professor Awi Federgruen provided me with constant sup-

port and tireless encouragement. He never failed to motivate me. His research style is

an archetype that I will strive to emulate throughout my career.

My frequent interactions and collaborations with Professor Costis Maglaras were

also very valuable learning experiences. I am grateful for his support and enthusiasm.

I would also like to thank Professors Daniel Bienstock, Guillermo Gallego, and Sergei

Savin for serving on my dissertation committee and providing me with useful sugges-

tions. Professors Sebastian Ceria and Fangruo Chen have been my advisors during the

first phase of the doctoral program at Columbia Business School. I am indebted to

both of them and all my teachers here at Columbia for a stimulating and rewarding

experience that has broadened my horizon. Professors Linda Green and Julien Bramel

have advised me during my first experiences on front of the classroom and they have

taught me how to convey excitement about the field of operations management to my

students.

My fellow graduate students also played an integral role in my education. In particu-

lar, I am grateful to Bin Yu, and my office-mates Jeremy Staum and Gad Allon for many

fruitful discussions. I am also thankful for the collaboration with former Columbia

Ph.D. Michal Tzur.

Finally, I wish to express my gratitude for all the years of encouragement and sup-

port by my parents, Johannes and Karin Meissner. This thesis is dedicated to them.

iii



Chapter 1

Introduction

The areas of Revenue Management and Supply Chain Management represent two funda-

mental pillars for the management of industries that procure and distribute consumer

products. The former is concerned with the management of the demand processes and

the development of methodologies and systems required to support this management

function. The area of Supply Chain Management is concerned with the the design of

a supply process to match a given demand pattern as efficiently as possible. It may

therefore be viewed as the complement of the Revenue Management area.

While many challenges remain in the development of these two areas, by them-

selves, there is an increasing recognition of the importance to integrate the two areas

with the help of models which simultaneously manage the supply and demand pro-

cesses. The integrated area is often referred to as Enterprise Profit Optimization; its

state-of-the-art is still in its infancy.

Determining the ‘right’ price to charge for a product is a complex task. A volumi-

nous literature in economics and marketing has been devoted to models which pre-

1
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scribe how prices should be set in industries in which a limited number of competing

firms offer similar products, which may therefore be viewed as substitutes. These pa-

pers typically model the interaction among competitors as a noncooperative game, see

Vives (2000) and Tirole (1988) for survey texts.

More recently, operations management papers have demonstrated that the opera-

tional environment and associated cost structures may have a fundamental impact on

the equilibrium behavior in the industry, in general, and the resulting price levels in par-

ticular. See Cachon (2003) for a recent survey. Little remains known, however, about

how prices should be set in a competitive environment, in the simultaneous presence

of two other major complications:

(i) time dependent demand functions and cost parameters, and

(ii) scale economies in the operational costs

Conversely, traditional inventory and procurement planning models assume that

the demand processes for the finished goods are exogenously given, when, in reality,

these demand processes can be managed by appropriate price choices, inter alia. It is of

critical importance to understand how effective replenishment strategies are affected

by pricing decisions and how replenishment strategies and pricing decisions are to be

integrated effectively.

This dissertation focuses on the following four areas of complicating factors affect-

ing the union of Supply Chain Management and Revenue Management:

(A) Pricing Decisions. Here we distinguish between two types of settings. In the first

case, the firm operates as a monopolist or in an environment of imperfect compe-
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tition, with the competitors’ prices (temporarily) fixed. In the second case, prices

need to be determined in an environment of imperfect, oligopolistic competition

in which the firm’s demand depends not only on its own price choices but equally

on those made by each of the firm’s competitors.

(B) Time-dependent demand functions and cost structures.

(C) Economies of scale in the operational cost. These arise, for example, from fixed

cost components in the procurement processes, i.e. production and distribution

setup costs.

(D) Capacity Limitations, i.e. limits on how many units can be produced in any given

period or, in the aggregate, over the complete planning horizon. Such capac-

ity limits often create interdependencies between different products sharing the

same production or distribution equipment.

This dissertation consists of an analysis four finite horizon planning models. In

each, the planning horizon is partitioned into a finite number of periods, with decisions

restricted to the the beginning of these periods. Each of the four models integrates sev-

eral of the complicating factors (A)–(D), as explained below. Each corresponds with one

of chapter 2–5 of this dissertation, with the following titles:

Chapter 2: Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Prob-

lems

Chapter 3: Probabilistic Analysis of Progressive Interval Heuristics for Multi-Item Ca-

pacitated Lot-Sizing Problems

Chapter 4: Dynamic Pricing Strategies for Multi-Product Revenue Management Prob-

http://www.meiss.com/en/publications/interval-heuristics.html
http://www.meiss.com/en/publications/probabilistic-lot-sizing.html
http://www.meiss.com/en/publications/dynamic-pricing.html
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lems

Chapter 5: Price Competition under Time-Varying Demands and Dynamic Lot Sizing

Costs

Chapters 2 and 3 correspond with Federgruen, Meissner, and Tzur (2002) and

Federgruen and Meissner (2004a), respectively. They consider a multi-item planning

model in which the time series of demands for each of the items under consideration,

is given exogenously. The model integrates complicating factors (B)–(D), above. While

the model, itself, has been addressed since the seventies, in a voluminous literature,

we develop the first class of heuristics which can be designed to be simultaneously

polynomially bounded and asymptotically optimal as T , the number of periods in the

planning horizon tends to infinity. The heuristics can also be designed to generate an

ε-optimal solution for any ε > 0. The properties are obtained in the first paper, as

worst case guarantees, merely assuming that some of the model parameters are uni-

formly bounded from above and below. For example, we assume that the demand and

capacity values are uniformly bounded from above. The second paper relaxes this as-

sumption and establishes that performance guarantees hold, with probability one, if the

periods’ demand and capacity values are guaranteed as independent realizations from

an arbitrary (common) multivariate distribution, possibly with unbounded support. To

our knowledge, this paper represents the first probabilistic analysis of heuristics in en-

tire lot sizing literature. The first paper also reports on an extensive numerical study

demonstrating the practical importance of the proposed class of heuristics.

Chapter 4 corresponds with Maglaras and Meissner (2004) and addresses a plan-

ning model in which all demand must be satisfied from inventory that is available at the

http://www.meiss.com/en/publications/dynamic-pricing.html
http://www.meiss.com/en/publications/competition-lot-sizing.html
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beginning of the planning horizon. In other words, the model addresses settings where

inventory can not be replenished, so that the complicating factory (C) is irrelevant in

this setting. The model succeeds in integrating the factors (A) and (D). More specifically,

the model assumes that that in each period the demand rate for each of the items can

be adjusted by selecting price levels for all n items. While each item’s demand rate,

in any given period, is given by a demand function of the complete price vector which

prevails in this period, these demand functions are assumed to be time-homogenous.

However, the generalization to the case of time-dependent demand functions is rather

simple, thus enabling the integration of the factors (A), (B) and (D). As such, the model

represents an important generalization and extension to the classical papers by Gal-

lego and van Ryzin (1994, 1997). The model is shown to be applicable, with minor

changes, to a setting where the price levels are determined, upfont, but the firm has

the discretion to accept or reject individual product requests.

Finally, the fifth and last chapter corresponds with Federgruen and Meissner

(2004b) and addresses a competitive pricing model for an industry in which each of

N competing firms sell a distinct item or product brand. The different items or brands

are (close) substitutes. This model integrates the complicating factors (A)–(C), i.e. it

succeeds in establishing the simultaneous incorporation of the complicating factors (B)

and (C) into an oligopoly model with price- or quantity competition. Prior work has

addressed only one of the factors (B) or (C) in the context of competitive pricing (factor

(A)).

For example, Bernstein and Federgruen (2003) address a setting where each firm

incurs fixed as well as variable procurement costs along with (linear) inventory carrying



6

costs. However, the model assumes an infinite horizon setting with time-invariant de-

mand functions and cost parameters. Here the long-run average operational costs are

given by the simple closed-form Economic Order Quantity (EOQ) cost function, i.e. the

costs are given by the sum of a term that is proportional with the demand value itself

and one that is proportional with the square root of the demand value, thus reflect-

ing scale economies. Cachon and Harker (2002) similarly consider, for an industry

with two firms, a setting with a single set of time-invariant demand functions and

with a closed form cost function given by a concave power function of the demand

volume, (possibly in conjunction with a linear cost component), once again to reflect

scale economies. Other than the EOQ-cost model above, the authors show that their

cost structure arises in a specific service competition model.

At the same time, a stream of marketing papers address competitive pricing prob-

lems under time-dependent demand functions, however with simple linear cost func-

tions, and under the assumption that each period’s demand is procured in the same pe-

riod, i.e. no inventories are carried. Perakis and Sood (2003, 2004) and Kachani, Per-

akis and Simon (2004) also address competitive pricing problems under time-varying

demand functions. Since each firm starts the planning horizon with a known inventory

and inventories can not be replenished at any time during the horizon, these models

consider no replenishment costs.

While the demand processes in chapter 2, 3 and 5 are deterministic, the fourth

chapter represents them as homogeneous Poisson processes.



Chapter 2

Progressive Interval Heuristics for

Multi-Item Capacitated Lot-Sizing

Problems

2.1 Introduction

This chapter addresses capacitated dynamic lot-sizing models. We consider a family

of N items which are produced in the same facility or replenished by the same outside

supplier. Demands are specified for each item and each period of a given horizon of T

periods. If in a given period an order is placed for some or all of the items, set-up costs

are incurred. The aggregate order size is constrained by a capacity limit. The objective

is to find a lot-sizing strategy that satisfies the demands for all items over the entire

horizon without backlogging, and which minimizes the sum of inventory carrying, fixed

7
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and variable order costs. All demands, cost parameters and capacity limits may be time-

dependent, reflecting for example, general time-series of forecasts, customer orders,

seasonal fluctuations of the cost parameters, or changes in the capacity due to new

acquisitions or scheduled maintenance.

In the basic model, the setup cost for an order in any given period only depends on

the period index but not on the composition of the order. This assumption is satisfied

in many, if not most practical applications, e.g. when the setup cost represents the

fixed cost of dispatching a truck or barge or that of initiating a production run in a

batch production facility. We refer to this basic case as the Joint Setup cost (JS) model.

We extend the model to allow for item-dependent setup costs in addition (or in lieu

of) the joint setup costs and refer to this generalized model as the Joint and Item-

dependent Setup cost (JIS)-model.

This capacitated dynamic lot-sizing model is one of the most frequently used deter-

ministic inventory planning models. It needs to be solved repeatedly for each level of

a Material Requirements Planning (MRP) or Distribution Requirements Planning (DRP)

system with the orders resulting from the capacitated lot-sizing problem(s) at a given

level being used as the demand input parameters for the lot-sizing problem to be solved

at the next level. The model represents the fundamental challenge of capacity require-

ments planning while assessing tradeoffs between the costs of holding inventories and

the potential of exploiting economies of scale in the procurement costs.

Based on a variety of applications for the BASF and Procter & Gamble corpora-

tions as well as a production-distribution problem for the so-called PAMIPS (1995) and

MEMIPS (1997) projects, Belvaux and Wolsey (2000, 2001) have developed a prototype
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optimization system for a class of capacitated multi-item lot-sizing problems which in-

clude the (JIS)-model. The system called bc-prod uses the extended modelling and opti-

mization library of XPRESS as its engine but allows for simplified problem specification

and generates various cutting plane constraints specific to the structure of lot-sizing

problems. Bixby (2001) in reviewing the progress and future challenges in CPLEX’s

mixed integer programming capabilities emphasizes the importance of supply chain

management models and within this area, the class of capacitated multi-item lot-sizing

problems as being of prime importance and awaiting algorithmic improvements.

The general model is very complex. Florian et al. (1980) have in fact shown that

even the single-item case (N = 1) is NP-complete, as opposed to the uncapacitated

version which, for a planning horizon of T periods, is solvable in O(T logT ) time, see

Federgruen and Tzur (1991), Wagelmans et al. (1992), Aggarwal and Park (1993),

and in O(T ) time under some mild assumptions on the data. The difficulty arises in

part because under capacity restrictions, it may no longer be optimal to place an or-

der at the last possible time; in other words, it is not possible to confine oneself to

so called zero-inventory ordering policies. Polynomial time algorithms have been de-

veloped in the single-item case, but these tend to be time-consuming and restricted to

special parameter settings only, see Florian and Klein (1971), Bitran and Yanasse

(1982), Chung and Lin (1988) and Van Hoesel and Wagelmans (1996). Recently, Van

Hoesel and Wagelmans (2001) (and Gavish and Johnson (1990) for a more restricted

version of the model) developed a fully polynomial approximation scheme for the gen-

eral single-item model, i.e. an algorithm which generates an ε-optimal solution for any

ε > 0, in an amount of time which is polynomial in the problem size as well as 1
ε .
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When several items are involved (N ≥ 2), no efficient solution methods are known,

with the exception of Anily and Tzur (2004a)’s dynamic programming algorithm for

the case of constant capacities, which is of polynomial complexity when the number

of items N is fixed. (This paper also deals with the case where multiple capacitated

batches may be ordered in each period. Anily and Tzur (2004b) develop an exponen-

tial search algorithm for the same problem.) It is for this reason that even the more

advanced Manufacturing Resource Planning systems (MRPII) start with the determina-

tion of system-wide order releases without consideration of capacity constraints, i.e.

on the basis of the solution (for each stage or item) of the uncapacitated single item

dynamic lot sizing model. It is only in the last phase of the planning process that

the elimination of capacity conflicts is attempted by heuristic adaptations of the basic

schedules.

Federgruen and Tzur (1994a) have demonstrated for single-item uncapacitated

dynamic lot-sizing models that optimal or close-to-optimal initial decisions can be

made by truncating the horizon after a relatively small number of periods. A fore-

cast horizon is found in which at most three and usually only two orders are placed

(the obligatory order in the first period included). It is reasonable to expect similarly

short forecast horizons to continue to apply when multiple items are considered and

in the presence of capacity constraints, as long as the utilization rate is not very close

to 1. See Federgruen and Tzur (1994a) for a discussion of how these forecast horizon

results relate to capacitated models. This suggests that a close to optimal solution may

be generated by partitioning or truncating the horizon.

We therefore develop and analyze a new class of so-called progressive interval
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heuristics. A progressive interval heuristic consists of J iterations. In iteration �, the

problem is solved to optimality for period 1 to some period T�, but all integer variables

for periods 1 to T� − τ (for some τ > 0) and all continuous variables for periods 1 to

some t� ≤ T�−1 are fixed at their optimal values after iteration � − 1. When solving

a given interval problem, we append as boundary conditions, the necessary and suffi-

cient conditions for a feasible extension to the remainder of the planning horizon. The

horizons are chosen such that 0 = T0 ≤ T1 ≤ · · · ≤ TJ = T and 0 = t1 ≤ t2 ≤ · · · ≤ tJ ,

while τ ≥ T� − T�−1 the number of periods by which the horizon in the �-th iteration

is expanded. The complexity of any mixed integer programming method is largely de-

termined by the number of (unrestricted) integer variables. Choosing the parameter τ

sufficiently small, therefore ensures that the complexity in each iteration grows only

modestly. Thus, while the heuristic solves a sequence of progressively larger problem

instances, exact solution methods remain viable with only modest increases in compu-

tational effort.

We pay special attention to two extreme subsets of this class of heuristics: (i) the

Strict Partitioning heuristics (SP): here t� = T�−1 and T� − T�−1 = τ , with the possi-

ble exception of the last interval. The planning horizon is thus partitioned into non-

overlapping intervals and in the �-th iteration, only the total cost pertaining to the

newly appended τ-period interval are minimized, given the boundary conditions (in

particular ending inventories) generated in the previous (� − 1)st iteration; (ii) the Ex-

panding Horizon heuristics (EH): here t� = 0 for all � = 1, . . . , J − 1. A hybrid imple-

mentation would e.g. set t� = [T� −M]+ for some window M . The tradeoffs are clear:

(EH) [(SP)] provides, within the class of progressive interval heuristics, maximum (min-



12

imum) flexibility at the expense of maximum (minimum) incremental computational

complexity in adjusting the solution from each iteration to the next.

When applied to the (JS)-model, the (SP)-heuristic can be implemented to be, simul-

taneously, asymptotically optimal as T → ∞ and to run in O(NT 2 log logT ) time, pro-

vided some of the model parameters are uniformly bounded from above or from below.

With the same choice of τ and the same interval choices, the (EH)-heuristic continues

to be asymptotically optimal and runs in O (NT 3) time. Our numerical study reveals,

however, that it generally results in significantly better solutions than the (SP) heuris-

tic. Both heuristics can also be designed as polynomial time approximation schemes,

i.e. to be of polynomial time complexity and to guarantee and ε-optimal solution for

any ε > 0. To our knowledge, these are the first heuristics for multi-item capacitated

lot-sizing problems to possess these properties.

While the above theoretical results refer to the (JS)-model, a comprehensive numeri-

cal study shows how in particular the (EH)-heuristic, can be effectively used for the gen-

eral (JIS)-model (with period- and item-dependent setup costs) as well. For the latter, it

is possible to find the optimal solution for instances with up to 150–200 setup variables

(e.g. when N = 10 and T = 15 or 20). For these problem sizes, the (EH)-heuristic, gener-

ates close-to-optimal solutions with an optimality gap of up to 2% across a large set of

parameter combinations. (The (SP)-heuristic, while significantly faster, often generates

solutions with optimality gaps above 10%.)

While exact optimality gaps can not be measured for larger problem instances, our

theoretical results show that (at least for the (JS) model) optimality gaps can be ex-

pected to be even lower as T , the length of the planning horizon, increases. We system-
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atically evaluate the performance of both the (SP) and the (EH)-heuristic for problem

instances with the number of items varying from 10 to 25 and the horizon length vary-

ing from 10 to 50 in the (JIS) and up to 100 in the (JS)-model. An earlier numerical

study for the single item problem in Federgruen and Tzur (1994b) shows that prob-

lems with up to 100 periods can be solved by a slight variant of the (SP)-heuristic with

an optimality gap of less than 7% and, on average, equal to 2%.

Summarizing, the main contributions of this chapter are (i) the design of a new class

of heuristics; (ii) the demonstration that, for (JS), both the (SP)- and (EH)-heuristics can

be designed to be of low polynomial complexity as well as asymptotically optimal; (iii)

the proof that for finite T , both (SP)- and (EH) can be designed to to be polynomial time

approximation schemes; (iv) the demonstration that a progressive interval heuristic

generates close-to-optimal solutions with modest computational effort, even for large

scale problems.

While our theoretical and numerical analysis are based on the (JS) and (JIS) models,

we believe that the effectiveness of the progressive interval heuristics bodes well for its

use in general multi-period production and inventory problems.

The remainder of this chapter is organized as follows: Section 2.2 reviews the rele-

vant literature. In Section 2.3 we introduce the (JS)-model and its notation. In Section

2.4 we describe the new class of heuristics and develop worst case bounds for their op-

timality gaps. In Section 2.5, we discuss how each interval problem, which arises in an

iteration of the heuristic, can be solved effectively via a general purpose mixed integer

programming method or a tailor-made branch-and-bound method. This allows us to

identify implementations that are simultaneously asymptotically optimal as well as of
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very reasonable and polynomial complexity. Finally, Section 2.6 discusses extensions to

the general (JIS)-model as well as the numerical study.

2.2 Literature Review

In this section, we provide a brief review of the existing literature, beyond the papers

mentioned in the introduction.

Chen et al. (1994) and Shaw and Wagelmans (1998) developed two relatively ef-

ficient pseudo-polynomial solution methods for the general single item model. Their

extensions to the multi-item model result in dynamic programs with a state space of

dimension N and larger, and are therefore entirely unusable except for the smallest

possible number of items N. As mentioned, even for the single-item model, this chap-

ter’s heuristics are, to our knowledge, the first to be asymptotically optimal and of

polynomial complexity.

All other existing methods are based on heuristics and none has provable bounds

for the associated optimality gaps. These heuristics can be divided into simple con-

structive heuristics and mathematical programming based heuristics. The constructive

heuristics include “greedy methods” in which a specific sequence is proposed to as-

sign the capacity of a given period to satisfy its or later demand, e.g. Eisenhut (1975),

Lambrecht and Vander Eecken (1978), Dixon and Silver (1981), and Maes and Van

Wassenhove (1986). Other constructive heuristics start with the solution of the un-

capacitated model, and search for a feasible production schedule by simple shifting

routines, e.g. Van Nunen and Wessels (1978), Dogramaci et al. (1981), Nahmias
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(1989) and Karni and Roll (1982).

The mathematical programming based heuristics employ linear programming, la-

grangean relaxation, cutting plane methods and column generation techniques. Ex-

amples include Baker and Dixon (1978), Eppen and Martin (1987), Pochet (1988),

Leung et al (1989), Martin (1987) and Trigeiro et al. (1989). We refer to Maes and

Wassenhove (1988), Salomon (1990) and Kuik et al (1994) for detailed surveys of

these methods until 1994.

State-of-the-art solution methods include, in addition to the bc-prod system men-

tioned in Section 2.1 (Belvaux and Wolsey (2000, 2001)), Stadtler (2003) and Suerie

and Stadtler (2003). Interestingly, these methods all apply variants of the (EH)-

heuristic: In the ‘fix-and-relax’ heuristic, each consecutive problem instance expands

the horizon of the previous instance by appending the same number (τ) of periods to

its tail. The ‘internally rolling schedule heuristics’ in Stadtler (2003) and Suerie and

Stadtler (2003) use constant interval increments ≤ τ . In each problem instance, in-

stead of imposing boundary conditions that are necessary and sufficient for a feasible

extension till the end of the full planning horizon, the authors include the periods be-

yond the end of the current interval, however with all binary variables in these periods

treated either as continuous variables (bc-prod) or set equal to one (Stadtler (2003)

and Suerie and Stadtler (2003)). The heuristics in the latter two papers substitute

all cost parameters for the after-the-interval periods by zero, with the possible excep-

tion of variable overtime cost rates, in case the capacity constraints may be violated by

scheduling overtime. (Additional heuristic changes are applied to an interval’s last set

of periods.)
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Federguen and Tzur (1994c) describe an effective heuristic for the so-called Joint

Replenishment Problem (JRP), which is similar to the (SP)-heuristic. (This heuristic can

be designed to be asymptotically optimal and of polynomial complexity, under specific

parameter conditions). The (JRP)-model is the special case of the (JIS)-model, which

arises when no capacity constraints prevail. Federgruen and Tzur (1999) describe a

general framework for a variant of the (SP)-heuristic, with applications to other types

of lot-sizing problems.

2.3 The multi-item model with joint setup cost (JS)

In this section we discuss our basic model (JS) with joint setup costs only. We use

the index i ∈ {1, . . . , N} to distinguish between items and the index t ∈ {1, . . . , T} to

distinguish between periods. For i = 1, . . . , N and t = 1, . . . , T , we specify the following

parameters:

dit = demand for item i in period t; (dit ≥ 0)

Dt = aggregate demand in period t =∑Ni=1 dit

cit = variable per unit order cost for item i in period t

hit = cost of carrying a unit of inventory of item i at the end of period t

Kt = setup cost incurred when an order is placed in period t

Ct = order capacity, i.e. the maximum number of units which can be ordered in

period t.

Without loss of generality, we define the units of the items such that ordering one
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unit of an item consumes one unit of capacity. We define the following decision vari-

ables:

xit = order size for item i in period t; i = 1, . . . , N; t = 1, . . . , T

Yt =




1 if
∑N
i=1 xit > 0

0 otherwise

t = 1, . . . , T

Iit = ending inventory of item i in period t; i = 1, . . . , N; t = 1, . . . , T

Let I0t = the minimum aggregate inventory at the end of period t, such that a feasible

production / inventory plan exists for periods t+1, . . . , T . These minimum stock levels

are easily computed from the following recursion, which can be verified by induction:

I0t =
(
Dt+1 − Ct+1 + I0t+1

)+
, t = 1,2, . . . , T − 1, with I0T = 0 (2.1)

The multi-item model can thus be formulated as follows:

(P) z∗ = min



T∑
t=1


KtYt +

N∑
i=1

(citxit + hitIit)



 (2.2)

s.t.

Iit = Ii(t−1) + xit − dit, i = 1, . . . , N, t = 1, . . . , T (2.3)

N∑
i=1

xit ≤ CtYt, t = 1, . . . , T (2.4)

N∑
i=1

Iit ≥ I0t , t = 1, . . . , T (2.5)

xit ≥ 0; Iit ≥ 0; Yt ∈ {0,1} (2.6)

The above formulation is often referred to as the network formulation. The plant

location formulation is an alternative that disaggregates the production quantities {xit}
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into {xist} with xist = the amount of item i, ordered in period s to satisfy demand in

period t.

2.4 Progressive interval heuristics: worst case bounds for opti-

mality gaps

A progressive interval heuristic solves a sequence of J problem instances. The first in-

stance considers the capacitated lot sizing problem that arises when restricting oneself

to the first T1 periods, i.e., it solves (P) with T replaced by T1. In each of the subsequent

instances, a given number of periods ≤ τ is appended to the tail of the previous plan-

ning horizon. In the h-th iteration, a lotsizing problem (J̃Sh) is solved on the complete

interval {1, . . . , Th}, albeit that all Y−variables of periods 1, . . . , Th−τ are fixed at their

optimal values in the h− 1st iteration, i.e. when solving (J̃Sh−1). Recall Th − Th−1 ≤ τ ,

i.e. Th − τ ≤ Th−1. Thus, the number of unrestricted binary variables in each iteration

remains constant, i.e. equal to τ . Moreover, the aggregate ending inventory in period

Th is constrained from below by the I0-value.

Different progressive interval heuristics give varying amounts of flexibility to the

continuous variables in each of the J problem instances. As mentioned, we focus in

particular on two extremes: under the Strict Partitioning heuristics (SP), all interval

increments (T�−T�−1) = τ with the possible exception of the last interval. Also, among

the continuous variables, only those pertaining to the last τ periods of the current

planning horizon are allowed to be chosen freely, (i.e. t� = T� − τ = T�−1) without

any restrictions beyond those implied by the constraints of (P); all other continuous
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variables are fixed at their optimal value in the previous problem instance.

Under the expanding horizon (EH)-heuristics, all of the continuous variables are

allowed to be varied fully (subject, of course, to the constraints (2.3) - (2.6)), i.e. t� =

0; moreover this class allows for T� − T�−1 < τ, � = 1, . . . , J − 1. If the stepsizes

(T� − T�−1) < τ , even many of the setup decisions determined in one iteration of the

algorithm, may be revisited in subsequent iterations, on the basis of additional demand,

cost and capacity information pertaining to additional periods. (We have observed that

it is often effective to append a single period as one progresses from one interval to

the next, i.e. T� − T�−1 = 1.)

Various intermediate implementations may be envisioned; for example, a (moving)

window of M > τ periods may be used such that the continuous variables in (up to) the

last M periods are unrestricted, as opposed to the last τ (SP) or all periods under (EH).

Federgruen and Tzur (1999) consider a slight variant of (SP) under which the size and

the composition of the last (or several of the last) order periods in the previously solved

iteration may be varied, along with the production quantities of the newly appended

periods; see ibid for details.

Let zSP and zEH denote the cost of the solutions found by the (SP)- and the (EH)-

heuristics, for a given choice of
{
T�, t�, τ

}
. We now derive worst case bounds for their

optimality gaps, under mild conditions for the cost, demand and capacity parameters.

We first derive a lower bound for z∗ as an explicit function of T. It is quite simple

to obtain a lower bound when assuming all periods’ demands are uniformly bounded

away from zero; however, to allow for sporadic demands, we derive an alternative

bound, merely assuming that the cumulative demand over a large enough time interval



20

is uniformly bounded away from zero. Its proof, while similar to that in Federgruen

and Tzur (1994c), requires major adjustments to reflect the capacity limits.

Theorem 2.1 Assume there exists a positive integer θ ≥ 1, and for all i = 1, . . . , N

positive constants di∗ such that

dit + . . .+ di(t+θ−1) ≥ θdi∗ i = 1, . . . , N, t = 1, . . . , T − θ + 1 (2.7)

T∑
t=1

dit ≥ Tdi∗ i = 1, . . . , N (2.8)

In addition, assume there exist constants K∗ and C∗ and for each i = 1, . . . , N constants

hi∗ and ci∗ such that Kt ≥ K∗, Ct ≤ C∗, hit ≥ hi∗ and cit ≥ ci∗ for all t = 1, . . . , T . Let

d∗ =
∑N
i=1 di∗, κ =∑Ni=1 ci∗di∗, H∗ = 1

2

∑N
i=1hi∗di∗. Then, z∗ ≥ γT where

γ def= κ +




K∗
2θ if

√
H∗
K̂ ≥ 1

2θ(
2
√
(K∗ + 2H∗θ2)H∗ − 3H∗θ

)
if d∗

C∗ <
√
H∗
K̂ < 1

2θ(
(K∗+2H∗θ2)d∗

C∗ + H∗C∗
d∗ − 3H∗θ

)
if

√
H∗
K̂ ≤ d∗

C∗ <
1

2θ

(2.9)

Proof: We obtain a lower bound by replacing all fixed order costs by K∗, all capacities by

C∗ and for each item i = 1, . . . , N all variable order cost rates by ci∗, and holding cost

rates by hi∗. We refer to the resulting problem as the transformed problem. Consider a

solution in which m ≥ 1 orders are placed. For � = 1, . . . ,m let n� denote the number

of periods in the �th order cycle, i.e. the interval which contains the �th order period

and all subsequent periods prior to the next order interval (if any). (The mth interval

terminates with period T .)

We first derive a lower bound for the total holding costs incurred in a single order
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cycle of n periods in the transformed problem. Note that zero-inventory ordering may

fail to be optimal in the capacitated model, i.e. the starting inventory in the first period

may be positive for some or all items. However, the holding cost in the order cycle is

clearly bounded from below by assuming that the starting inventory equals zero.

Renumber the periods in this cycle as 1, . . . , n and let n = ψθ + τ with

0 ≤ τ < θ, i.e.,ψ =
⌊
n
θ

⌋
. Fix i = 1, . . . , N. Observe by our assumption that in each of the

intervals
[
(j − 1)θ + τ + 1, jθ + τ] for j = 1, . . . ,ψ at least θdi∗ units are demanded

for item i. Being ordered in or after period 1, the lowest holding costs for these de-

mands arise when θdi∗ units are demanded in period (j − 1)θ + τ + 1

(i.e. in the first period of this interval) and none in the remaining periods of the interval

[
(j − 1)θ + τ + 1, jθ + τ]. It follows that the holding costs in a single order cycle of n

periods are bounded from below by

∑
i hi∗θdi∗

∑ψ−1
j=0

(
τ + jθ) =∑i hi∗θdi∗ [ψτ + 1

2θψ(ψ− 1)
]

=∑i hi∗θdi∗ [⌊nθ
⌋
τ + 1

2θ
⌊
n
θ

⌋ (⌊
n
θ

⌋
− 1

)]
≥∑i 1

2hi∗θ
2di∗

[(
n
θ − 1

)+ (n
θ − 2

)+]

= g(n) where g(x)
def= H∗θ2

(
x
θ − 1

)+ (x
θ − 2

)+
is convex.

This implies the following lower bound for the total cost over the complete horizon:

z∗ ≥ κT +min
m


K∗m+min

n�


 m∑
�=1

g(n�) :
m∑
�=1

n� = T

 |m ≥ Td∗

C∗


 (2.10)

= κT +min
m

{
K∗m+

(
H∗θ2

)
m
(
T
mθ

− 1
)+ ( T

mθ
− 2

)+
∣∣∣∣Td∗C∗ ≤m ≤ max

(
Td∗

C∗
,
T
2θ

)}

The lower bound for m may be imposed because when mC∗ < Td∗, it is infeasible

to satisfy all demand. The equality in (2.10) follows, since, by the convexity of g(·),
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equal values n� = T
m, � = 1, ...,m achieve the minimum to its left. (The upper bound for

m may be imposed since the minimand to the right of (2.10) is increasing for m > T
2θ .)

(2.9) follows from (2.10), noting that for m ≤ T
2θ , the (·)+ operators may be ignored.

We now derive an upper bound for the optimality gap of the (SP)- and (EH)-heuristic.

The bound is established under the parameter conditions of the lower bound Theorem

2.1, a uniform lower (upper) bound for the capacities (holding cost rates) and a condi-

tion which specifies that a uniform slack capacity exists over any cycle of θ periods,

i.e.

(S) there exists a constant σ > 0 and an integer ζ such that

t+ζ∑
r=t+1

Cr ≥
t+ζ∑
r=t+1

Dr + σ for all t = 0, . . . , T − ζ. (2.11)

We first need the following lemma which shows that under condition (S) a uniform

upper bound prevails for all minimum reserve stocks
{
I0t
}
:

Lemma 2.1 Let condition (S) hold and assume a constant C∗ exists such that Ct ≤ C∗.

Then

I0t ≤ U def= ζC∗ − σ t = 1 . . . , T . (2.12)

Proof. By repeated substitutions in (2.1), we get for all t = 1, . . . , T:

I0t = maxt+1≤s≤T
[∑s

r=t+1(Dr − Cr)
]+ = maxt+1≤s≤min(T ,t+ζ−1)

[∑s
r=t+1(Dr − Cr)

]+
≤ maxt+1≤s≤min(T ,t+ζ−1)

∑s
r=t+1Dr ≤

∑min(T ,t+ζ−1)
t=t+1 Dr where, by (S), the second equal-

ity follows from
∑s
r=t+1(Dr − Cr) ≥

∑s−ζ
r=t+1(Dr − Cr) for s ≥ t + ζ. Thus, I0t can be
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bounded by a sum of ζ consecutive aggregate demands, hence by a sum of ζ consecu-

tive capacity values minus σ , given (2.11). This proves (2.12).

Theorem 2.2 Let (S) hold. Assume there exists an integer θ ≥ 1 and for each i = 1, . . . , N

a constant di∗ such that:

(dit + . . .+ di,t+θ−1) ≥ θdi∗, t = 1, . . . , T − θ + 1; (2.13)

T∑
t=1

dit ≥ Tdi∗. (2.14)

In addition, assume there exist constants K∗, K∗, C∗ and C∗ and for each i = 1, . . . , N

constants hi∗, h∗i , ci∗, c
∗
i such that for all t ≥ 1, K∗ ≤ Kt ≤ K∗, C∗ ≤ Ct ≤ C∗, hi∗ ≤

hit ≤ h∗i and ci∗ ≤ cit ≤ c∗i . Let ∆c∗ = maxi
[
c∗i − ci∗

]
, η = K∗

C∗ + ∆c∗, h∗ = mini hi∗,

∆h∗ = max[h∗i − hi∗] and D∗ =
∑N
i=1 di∗. Let γ be defined as in (2.9) and

ρ1 = K∗ + C∗
(⌊

η
h∗

⌋
η− 1

2

⌊
η
h∗

⌋(⌊
η
h∗

⌋
+ 1

)
h∗
)
. (2.15)

ρ2 = U
[(
∆c∗ +K∗)+ (⌊U

σ

⌋
+ 1

)
ζ∆h∗ +

(
∆c∗ +K∗

h∗

)
∆h∗

]
. (2.16)

ρ = ρ1 + ρ2. (2.17)

Then,

(a)
zSP − z∗
z∗

≤ (J − 1)ρ
γT

, (b)
zEH − z∗
z∗

≤ (J − 1)ρ
γT

.

Proof: (a) We show that an optimal solution of the complete problem can be trans-

formed, in two phases, into one which is achievable by the (SP)-heuristic, adding at

most (J − 1)ρ to the total cost. In Phase I, the optimal solution is transformed into
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one with all intervals’ ending aggregate inventory equal to their minimum I0-level. In

Phase II, the composition of the reserve stock at the end of each of the intervals is made

identical to that of the solution of the (SP)-heuristic.

To describe the transformation in Phase I, renumber the periods in the first � inter-

vals from 1, . . . , T�, starting with T� and going backwards, i.e. period t is now renum-

bered as T�− t+1, t = 1, . . . , T�. With this numbering, period t occurs t periods before

the end of the �th interval.

In the optimal solution, let Qir denote the number of units of item i ordered in

period r to satisfy demands in some future period in the (� + 1)st or later intervals

(i = 1, . . . , N, r = 1, . . . , T�). Also, let Qr =
∑
i Qir . The starting aggregate inventory of

the (�+1)st interval is =∑T�r=1Qr > I
0
1 . Since a feasible solution exists for (JS�+1) with

a starting inventory of I01 only, it is feasible to postpone the orders for
(∑T�

r=1Qr
)
− I01

units to periods that belong to the (� + 1)st interval itself. The transfer of these order

quantities requires at most



(∑T�

r=1Qr
)
−I01

C∗


 additional setups in the (� + 1)st interval,

and therefore at most



(∑T�

r=1Qr
)
−I01

C∗


K∗ ≤



(∑T�

r=1Qr
)

C∗


K∗ ≤ K∗ + K∗

C∗
∑T�
r=1Qr in addi-

tional setup costs. An upper bound for the total additional costs due to the transfer of

these order quantities is therefore given by:

max



N∑
i=1

T�∑
r=1


c∗i − cir −

r∑
s=1

hi,s


Qi,r + K∗C∗

T�∑
r=1

N∑
i=1

Qir +K∗
∣∣∣∣∣∣0 ≤

N∑
i=1

Qir ≤ Cr ,∀r

 .

This linear progam decomposes into T� single constraint problems. Each is straightfor-

wardly solved in closed form: for each r = 1, . . . , T�, set Qir = Cr for any item i whose
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objective function coefficient is largest, unless all {Qir : i = 1, . . . , N} - variables have

negative coefficients, in which case it is optimal to set Qir = 0 for all i = 1, . . . , N. This

results in the upper bound K∗ +∑T�r=1 maxi
[
K∗
C∗ + c∗i −

(
ci,r + hi,r + hi,r−1 + hi,1

)]+
Cr

≤ K∗+∑T�r=1 [η− rh∗]+ Cr ≤ K∗+C∗
∑Λ
r=1 [η− rh∗] ≤ K∗+C∗

{
Λη− 1

2Λ(Λ+ 1)h∗
}

= ρ1 where Λ =
⌊
η
h∗

⌋
is an upper bound on the number of periods in which inventory

may be held prior to the �-th interval for use during the �-th or later intervals. (The first

equality follows from the fact that the Λ+1-st until the T�-th term in the sum to its left

vanish). Apply the transfer process sequentially to the intervals � = J − 1, J − 2, . . . ,1

to end up with a solution in which all intervals’ ending aggregate inventory equals the

minimum I0-level and whose cost exceeds z∗ by at most (J − 1)ρ1.

Let L� denote the longest shelf life of any unit in stock at the end of the �-th interval

� = 1, . . . , J − 1. In Phase II, we transform the Phase I solution by changing the item

identity of at most I0T� units in stock at the end of period T�, without any additional

changes in the order and inventory plan. This maintains feasibility, leaves total set-up

costs unaltered and adds at most:

J−1∑
�=1

I0T�
(
∆c∗ + L�∆h∗

)
(2.18)

variable order and holding costs. In view of Lemma 2.1, to show that the summand in

(2.18) is bounded by ρ2, it suffices to show that L� ≤
(⌊

U
σ

⌋
+ 1

)
ζ + ∆c∗+K∗

h∗
def= L̄.

Assume first that at least one of the periods t∗ ∈
{
T� −

(⌊
U
σ

⌋
+ 1

)
ζ + 1, . . . , T�

}
has

slack capacity (in the Phase I solution). In this case, if one of the I0T� units in the reserve

stock has a shelf life of more than L̄ periods, the ordering of this unit can be post-
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poned until t∗, thereby reducing inventory costs by at least h∗
(
L̄−

(⌊
U
σ

⌋
+ 1

)
ζ
)
=

h∗∆c
∗+K∗
h∗ = ∆c∗ + K∗, offsetting any increase in the variable ordering cost (and pos-

sibly one setup cost), due to the postponement. Thus, if any of the I0T� units has a

shelf life larger than L̄, a full capacity order is placed in each period of the interval

[
T� −

(⌊
U
σ

⌋
+ 1

)
ζ + 1, . . . , T�

]
, resulting in an ending inventory of at least

∑T�
t=T�−(	 Uσ 
+1)ζ+1

(Ct −Dt) ≥
(⌊

U
σ

⌋
+ 1

)
σ > U units, which contradicts Lemma 2.1.

(b): Let I(�) denote the N-vector of ending inventories at the end of the �-th in-

terval, as determined in the �-th iteration of the (EH)-heuristic, � = 1, . . . , J, and let

{
YEHt : t = 1, . . . , T

}
be the Y -vector chosen by this heuristic. Transform the optimal

solution into a solution π(II) with cost value z(II) via Phase I and Phase II transforma-

tions as in part (a) except that in Phase II the �-th interval’s vector of ending inventories

is now matched to I(�). With T−1 = T0 = 0, let π(�) be an optimal solution of the mixed

integer program (P�), where � = 0, . . . , J.

(P�) : z(�) = min(2.2) (2.19)

s.t. (2.3)− (2.6) (2.20)

IiTh = I(h)i i = 1, . . . , N, h = max(� − 1,1),max(�,1), � + 1, . . . , J

(2.21)

Yt = YEHt t = 1, . . . , T�−1. (2.22)

(P�∗+1) is obtained from (P�∗), by simultaneously adding the constraints Yt = YEHt , t =

T�∗−1 + 1, . . . , T�∗ and eliminating the constraints IiT�∗−1
= I(�∗−1)

i , i = 1, . . . , N. Since

π(�∗) satisfies (2.21) and (2.22) for � = �∗ , i.e. since it maintains the same ending
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inventories at the end of the �∗-th interval as the EH-heuristic does at the end of the

�∗-th iteration, and since it is restricted to the same order periods in the first (�∗ − 1)

intervals as the (EH)-heuristic is in its �∗-th iteration, it follows that both π(�∗) and

the solution obtained by the (EH)-heuristic in its �∗-th iteration, minimize total costs

over the first T�∗ periods subject to the constraints (2.21) - (2.22) with � = �∗. This

implies that π(�∗) can be chosen such that Yt = YEHt , t = T�∗−1+1, . . . , T�∗ and hence

Yt = YEHt for all t = 1, . . . , T�∗ . Thus, π(�∗) is a feasible solution of (P�∗+1) so that

zEH = z(J) ≤ z(J−1) ≤ · · · ≤ z(0) ≤ z(II) ≤ z∗ + (J − 1)ρ, (2.23)

where the equality follows from the (EH)-solution optimizing P(J), the last inequality

from part (a) and the one before that from π(II) being a feasible solution of P(0).

Remark: The proof of Theorem 2.2 reveals that a tighter bound, with ρ replaced by

a smaller value, may be computed in any given instance, once the number of intervals

and their lengths have been specified.

2.5 Solution methods for a single interval problem: polynomial

and asymptotically optimal heuristics

We now discuss how a single interval problem in an iteration of the progressive interval

heuristic can be solved effectively. We have found that the general purpose branch-

and-bound method embedded in CPLEX is very effective to solve (JS) problems; see

Section 2.6 for details. Alternatively, several tailor-made branch-and-bound methods
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can be used. Below, we discuss three such methods. Two of them have the distinct

advantage over the CPLEX-based algorithm that their complexity, for the (SP)-heuristic,

is of the order O(2τP(τ)) with P(·) a polynomial in τ (The complexity is O(2τP(T))

for the (EH)-heuristic.). Theorem 2.2 shows that the two heuristics can be designed

to be asymptotically optimal, e.g. by choosing every (except possibly the last) interval

increment T� − T�−1 = τ, � = 1, . . . , J − 1 with

τ = ⌈α logT
⌉

for some α > 0 (2.24)

or more generally by choosing τ = o(T), as T →∞ (The last increment T� − T�−1 = T −⌊
T
τ τ
⌋
). Thus, by choosing τ as in (2.24), we obtain an algorithm which is simultaneously

asymptotically optimal and of polynomial complexity.

Our three branch-and-bound methods are based on three bounds for the value of

z∗.

zLB1 = minimum cost value in the uncapacitated model, i.e. ignoring constraints

(2.4)

zLB2 = maxλ≥0 z(λ) where

z(λ) = min
{∑T

t=1(KtYt +
∑N
i=1 (citxit + hitIi)+ λt[CtYt −

∑
i xit])

s.t. (2.3), (2.5), (2.6)}.

In other words, zLB2 is the value of the Lagrangean dual associated with the relax-

ation of the capacity constraints (2.5). Clearly, zLB2 ≥ z(0) = zLB1 .

zLB3 = zLBvar + zLBfix, where
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zLBvar = minimum value of the variable costs, i.e. minimum cost value when all setup

costs are reduced to zero, and

zLBfix = minimum value of the fixed (setup) costs required to satisfy all demands

when in each period t the best observed and yet unused setup cost and

capacity value can be used (instead of only Kt and Ct being available).

Therefore, zLBfix is a lower bound on the minimum value of the fixed costs, i.e.

z∗ ≥ min



T∑
t=1


 N∑
i=1

citxit +
N∑
i=1

hitIit


 s.t. (2.3) - (2.6)




+min



T∑
t=1

KtYt s.t. (2.3)-(2.6)


 (2.25)

= zLBvar + zLBfix = zLB3

In the single item case (N=1), zLB1 can clearly be evaluated via any of the solution meth-

ods for the single uncapacitated model. (This can be done in O(T logT ) time, see the

Introduction.) In the multi-item case, evaluation of zLB1 reduces to the solution of the

joint replenishment problem (JRP) without item-specific setup costs. In the important

special case where no speculative motives for carrying inventory prevail, the complex-

ity of this method is easily verified to be O(NT 2), see Federgruen and Tzur (1994c).

For general variable holding and order costs, any of the known lower bounds for the

JRP can be invoked, e.g. the bound in Federgruen and Tzur (1994c) which requires

O((N +K∗)T logT) time where K∗ = maxt Kt .

To evaluate zLB2 , the above methods need to be embedded in an unconstrained

optimization technique which searches for the maximizing vector λ.

zLB3 is the sum of two components: zLBvar is the minimum cost network flow in
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a network of special structure. Ahuja and Hochbaum (2004, §6.3)’s algorithm solves

this problem in O(NT logT ) time. To compute zLBfix, observe that it is optimal to

sequentially postpone setups until the last feasible period, since in any given period,

any prior (unused) capacity and setup cost value may be chosen. Thus, assume that

the first j setup periods t(1), t(2), . . . , t(j) have been determined, together with their

“adopted” capacities and setup cost values; the next setup period t(j+1) (if any) is then

obtained as the first period t after t(j) for which
∑t
s=1Ds is in excess of the sum of the

adopted capacities for periods t(1), . . . , t(j); it is then optimal to assign to this setup

period the best observed and yet unused setup cost and capacity value. This sequence

of setup periods (and associated setup costs and capacity values) can be determined

in O(T logT ) time, by maintaining two ordered lists of unused capacity and setup cost

parameters. Thus, zLB3 can be computed in O(NT logT ) time.

Branch-and-bound methods

Our branch and bound algorithm bears the following similarities to that in Federgruen

and Tzur (1994c): 1) it implicitly enumerates all possible subsets of the τ undeter-

mined order periods; 2) it characterizes each node of the b & b tree by a partition of the

periods into sets S+, S− and S0, with S+ the set of periods in which one is committed to

place an order, S− the set in which no order is allowed and S0 the set of periods where

no decision is fixed yet; 3) the root of the tree has all τ periods in the set S0 and every

non-terminal node has two successor nodes, one with an additional period shifted from

S0 to S+ and one with the same period shifted to S−. (This period is selected according

to a specific branching rule.) At any of the leaf nodes, for a given set of order periods,
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the problem reduces to a polynomially solvable network problem.

Compared to Federgruen and Tzur (1994c), a different lower bound is used to

evaluate each node of the b & b tree. For all r = 1,2,3, and a given node characterized

by S+, S−, S0 let, ZLBr = ∑i∈S+ Ki + the value of zLBr when the setup cost for periods

i ∈ S+(S−) is changed to 0(∞) and the capacity for periods i ∈ S− is changed to 0.

Each of the values ZLB1 , ZLB2 , ZLB3 , can be used as a lower bound for any node in the

tree; ZLB3 gives the optimal solution value for nodes at the bottom of the tree, where

S0 = ∅.

We now conclude that both the (SP)- and (EH)-heuristic can be implemented as an

asymptotically optimal and polynomially bounded heuristic, e.g., if all intervals are

chosen as in (2.24).

Corollary 2.1 Consider the (SP)-heuristic with interval lengths specified by (2.24) and

with each interval problem solved by the above branch-and-bound procedure.

(a) In the general multi-item case, the heuristic has complexity O(NT 2 log logT) if

each node is evaluated by the value ZLB3 and O((N + K∗)T 2 log logT) if evaluated by

ZLB1 .

(b) In the multi-item case without speculative motives, the heuristic has complexity

O(NT 2 logT) if each node in the branch-and-bound tree is evaluated by ZLB1 .

(c) In the single item case (N = 1) the heuristic has complexity O(T 2 log logT) if each

node in the branch-and-bound tree is evaluated by ZLB1 or ZLB3 .

(d) Assume the parameter conditions of theorem 2.2 are satisfied. The heuristic is

asymptotically optimal as T increases to infinity; the convergence of the optimality gap
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to zero is uniform in N.

Proof. Parts (a)–(c): The (SP)-heuristic requires, to compute its solution for any given

interval, at most 2τ−1 exact evaluations, one for each leaf of the branch-and-bound tree

and 2τ−1 lower bound evaluations of the other nodes of the tree. Exact evaluation of a

leaf takes O(Nτ logτ) time, as shown when discussing zLBvar. Also, τ = O(logT) and

J = O( T
logT ). The complexity bounds in parts (a)–(c) thus follow from those associated

with a single evaluation of ZLB1 or ZLB3 in the non-leaf nodes of the branch-and-bound

tree, i.e. O(Nτ logτ),O((N +K∗)τ logτ),O(Nτ2) and O(τ logτ) respectively. Part (d)

follows from the discussion at the start of Section 2.5.

Thus, the (SP)-heuristic can be designed to be asymptotically optimal with a com-

plexity which grows only somewhat faster than quadratically in T , and linearly in the

number of items N. The (EH)- heuristic has larger complexity. For example, when im-

plemented with interval increments of size τ and τ given by (2.24), its complexity is

O(NT 3) when each interval problem is solved by the above branch-and-bound proce-

dure based on the lower bound ZLB3 . On the other hand, the (EH)-heuristic tends to

generate significantly superior solutions, as we shall demonstrate in the next section.

The heuristics can also be designed as polynomial approximation schemes.

Corollary 2.2 Assume the parameter conditions of Theorem 2.2 are satisfied. For any

given ε ≥ 0, choose τ = min
{
T , ρεγ

}
and all interval increments T� − T�−1 = τ (with the

possible exception of the last interval increment which is of length T −
⌊
T
τ

⌋
τ). Assume

each interval problem is solved by the above branch and bound procedure, with each

node evaluated by zLB3 . The (SP)- and (EH)-heuristics result in an ε-optimal solution with
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a complexity bound which is O(NT) and O(NT 2 logT), respectively.

Proof. The optimality gap result is obvious if τ = T . Otherwise, by Theorem 2, for

PI = SP and PI = EH: z
PI−z∗
z∗ ≤ (J−1)ρ

Tγ ≤ (
⌈
T
τ

⌉
−1)
T

ρ
γ ≤

T
τ ρ
γT = ε. The complexity counts are

immediate from the proof of Corollary 1.

2.6 The general (JIS) – model and numerical results

In this section, we consider a generalization in which the fixed setup cost associated

with an order depends on the specific items included in that order. More specifically,

we assume that, in addition to the period-dependent (joint) setup cost Kt , incurred for

any order in period t, an item-specific setup cost is incurred for any item included in

the order. Thus, let

κit = setup cost incurred when ordering item i in period t;

i = 1, . . . , N; t = 1, . . . , T .

The mixed-integer programming formulation in Section 2.2 is easily adjusted to

incorporate these item- specific setup costs. Add a new set of zero-one variables:

yit =




1 if xit > 0

0 otherwise,

as well as constraints:

xit ≤ Ctyit i = 1, . . . , N, t = 1, . . . , T . (2.26)

yit ≤ Yt i = 1, . . . , N, t = 1, . . . , T . (2.27)
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The new objective function becomes:

z∗ = min



T∑
t=1


KtYt +

N∑
i=1

citxit + hitIit + κityit



 . (2.28)

The mechanisms of both the (SP) and the (EH)-heuristics are easily generalized, as

well. Note that it is not necessary to solve each interval problem to optimality; to

accelerate the procedure one may terminate as soon as a solution is found within a

given precision (δ %) of a lower bound. While it is unknown how the bounds for the

heuristics’ optimality gaps can be extended or how the heuristics can be designed to be

asymptotically optimal and polynomially bounded, in practice we find that in particular

the (EH)-heuristic generates close-to-optimal solutions in a modest amount of time. To

show this, we have conducted a numerical study, coding our heuristics in C++ and

running them on a Sun 4000 work station with Solaris 7 and 2 GB of RAM.

In designing our study, we have followed the design of Maes and Van Wassenhove

(1986, 1988), one of the most comprehensive comparisons of known heuristics, except

that they confined themselves to instances with N = T = 12 items and periods, while

we have systematically varied the number of items between 10 and 25, and the number

of periods from 10 to 50. (Maes and Van Wassenhove restrict themselves to the case

where only item-specific setup costs prevail, which remain constant across the com-

plete planning horizon). An additional difference is that, at the end of the eighties, no

solution method was capable of solving the model to optimality, even for moderate size

problems with N = T = 12. As a consequence, the quality of the proposed heuristics

was gauged by their gap with respect to the best solution found after evaluation of (up
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to) 1000 nodes in a tailor-made branch-and-bound tree. Today, we can solve these and

many larger problems to optimality, enabling us to gauge the actual optimality gaps.

Our base set of problems has N = 10 items and a horizon of T = 15 periods. As

in Maes and Van Wassenhove (1988) all demands {dit} are independently generated

from a Normal distribution with mean 100 and standard deviation of 10. With constant

capacity levels C, we consider three levels for the ‘problem density’, defined as the ratio
∑T
t=1 Ct∑T
t=1Dt

= TC∑T
t=1Dt

: low density where the ratio equals 2, medium density where it equals

4/3 and high where it is 10/9. We set all variable cost rates hit = cit = 1. For each

item i = 1, . . . , N we determine the fixed (item-specific) setup cost indirectly by first

choosing the EOQ-cycle time ‘Time Between Orders (TBO)’ =
√

2κ
hd =

√
2κ
100 =

√
κ
50 and

determine the κ value from this identity. The TBO value is generated from a uniform

distribution on the interval [1,3], when considering low TBO-values, the interval [2,6],

when considering medium TBO-values, and [5,10] for the case of high TBO-values. The

joint setup cost is calculated in the same way, i.e. from the identity TBO =
√

2K
100N .

We start by evaluating the (EH)-heuristic with respect to its optimality gap and run-

ning time, compared to the Complete Horizon Method (CHM) – the solution obtained

by the standard CPLEX MIP-solver when applied to the full problem. We consider all 27

combinations which arise when combining the three problem densities, three product

TBO values and three period TBO values. For each of these 27 combinations, we have

generated 5 distinct problem instances and we report in Table 2.1 the average running

times in CPU seconds, when solving the problem with CHM and with the (EH)-heuristic,

implemented with τ = 5, T� = �, � = 1, . . . , J = T and δ = 1%. We also report the

optimality gap of the solution generated by this heuristic. A hyphen indicates that
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(one or more) problem instances could not be solved to optimality within 6 hours, in

which case the reported optimality gap refers to the best found solution by CPLEX so

far. (Some of the optimality gaps are negative, implying that the (EH)-heuristic termi-

nates with a better solution than CHM after 6 hours of running time!) We note that, all

optimality gaps are below 1.75%.

Where comparable, the CPU times appear to be of the same order of magnitude as

those in state-of-the-art heuristics such as Stadtler (2003), even though differences

between the problem instances and platforms make a precise comparison impossible.

Unless specified otherwise, when CHM is used, we employ the plant location for-

mulation. Confirming prior experience with the (JIS)-model, we have noticed that this

formulation usually, though not necessarily, results in faster solutions. (In contrast,

we use the network formulation, unless specified otherwise, for progressive interval

heuristics, as it typically runs faster for these heuristics.) As a further benchmark for

the (EH)-heuristic, we have verified whether exact solutions (via CPLEX 7.1) could be

significantly sped up if the problem formulation is strengthened by adding the cutting

plane constraints (see Barany et al. (1984a,b)):

∑
t∈S

xit ≤
∑
t∈S


 l∑
u=t

diu


yit + Iil, i = 1, . . . , N and l = 1, . . . T , ∀S ⊆ {1, . . . , l}

(2.29)

to the network formulation (and the same constraints, with xit replaced by
∑T
w=t xitw ,

for the plant location formulation). More specifically, we have added the violated con-

straints in (2.29) after solving the LP-relaxation of the complete problem and before
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invoking the CPLEX MIP solver. Table 2.2 revisits the nine categories (of five problem

instances each) in Table 2.1 in which the item- and period TBO are of the same type,

i.e. in which they are both low, medium or high. Each of the last 6 columns reports on

one of six solution methods, described below and executed with a 1 hour time limit.

The first reported number is the optimality gap with respect to the best among the 6

solutions, with a * denoting a 0% gap; where the CPU time is less than 1 hour, we report

this measure within parentheses (in seconds). The 6 methods are: (1) CHM using the

network flow formulation by itself; (2) CHM using the network flow formulation with

the addition of violated cuts; (3) CHM with the plant location formulation by itself, (4)

CHM using the plant location formulation with the addition of the above violated cuts;

(5) the (EH)-heuristic where each interval problem is solved with the network flow for-

mulation, and (6) the (EH)-heuristic with the plant location formulation. We conclude

that the cuts in (2.29) do not result in major improvements either in terms of CPU

time or in terms of the quality of the generated solutions. (Frequently, both attributes

deteriorate, in fact).
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Table 2.2: (JIS): Gaps and CPU seconds of 4 exact and 2 EH heuristic

solutions (limit 1 hour per instance) with N = 10, T = 15

density TBO Net Net w/cuts Plant Plant w/cuts EH w/net EH w/plant

low low * (30) * (244) * (67) * (131) 1.85% (16) 2.35% (28)

low medium * 0.75% 1.03% 0.25% 1.15% (38) 1.42% (106)

low high * 1.35% 0.90% 0.02% 5.32% (53) 2.19% (145)

medium low 0.34% 0.64% * 0.13% 1.17% (25) 1.16 (32)

medium medium 0.82% 1.03% 0.46% 0.48% 0.12% (67) * (297)

medium high 1.02% 0.67% 0.59% 0.14% 0.15% (136) * (548)

high low 0.11% 0.40% * 0.34% 0.31% (51) 0.18% (98)

high medium 0.78% 1.01% 0.62% 0.91% 0.20% (96) * (288)

high high 0.91% 1.15% 1.08% 1.16% 0.04% (392) * (947)

In Table 2.3, we show that the (EH)-heuristic, again implemented with τ = 5 and

T� = �, � = 1, . . . , J, can be effectively used for significantly larger problem instances.

VaryingN from 5 to 25 and T from 10 to 50, we report the CPU running time in seconds.

We specify the parameters as above, confining ourselves to the case where the problem

density is medium, as is the ‘item TBO’ and ‘period TBO’ value. Three problem instances

are generated for every combination of N and T .
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Table 2.3: (JIS): Running times for the (EH)-heuristic

periods 10 25 50

5 item 7 42 124

10 item 29 184 524

15 item 416 2694 4310

20 item 1600 9372 16159

25 item 20335 66634 58264

As mentioned in Section 2.4, the (SP)-heuristic is considerably faster than the (EH)-

heuristic but it generally generates solutions with significantly larger optimality gaps.

Table 2.4 illustrates this for a set of 27 problem instances, all with N = 10 and T =

15 and parameters as specified in our basic set. Focusing on the medium problem

density case, we consider all 9 combinations of ‘product TBO’ and ‘period TBO’-values,

generating 3 instances for each. We report on the running times of CHM (terminated

when a solution is found within 1% of the best lower bound), the (EH)-heuristic and

the (SP)-heuristic. We also report both heuristics’ average optimality gaps. While the

optimality gap for the (EH)-heuristic is never in excess of 3% and on average equals

1.2%, that of the (SP)-heuristic may be as high as 33% and is on average 14.7%.
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Table 2.4: (JIS): Gaps and CPU seconds for the CHM (within 1% of LB),

the (EH)- and (SP)-heuristic with N = 10, T = 15

TBO period low medium high

low item TBO 0.9%/3.9% 0.1%/7.0% 0.3%/8.6%

running time 9/7/1 9/8/1 13/6/1

medium item TBO 1.3%/11.3% 0.8%/11.5% 0.5%/11.0%

running time 262/19/1 390/19/1 208/18/1

high item TBO 2.8%/33.8% 2.9%/25.9% 1.2%/19.7%

running time 7854/23/1 5235/24/1 6750/26/1

In Table 2.5, we evaluate the optimality gaps for the (JS)-problem with period-depen-

dent setup costs only. To this end, we consider a set of 45 problems with N = 10 and

T = 30 periods; we again consider all 9 combinations of ‘TBO’ and problem density

values and generate 5 problem instances for each for these combinations. We report

the CPU times of the CHM, the (EH)- and the (SP)-heuristic, along with the optimality

gaps associated with both heuristics. Once again, the (EH)-heuristic generates solutions

within 1% of optimality and does so within approximately 20 seconds of CPU time. The

CHM often requires several thousands of CPU seconds (i.e. many hours of CPU time);

its solution times depend highly on the parameters of the problem. The (SP)-heuristic

is an order of magnitude faster than the (EH)-heuristic but may generate solutions with

optimality gaps as large as 15%. Clearly, the (EH)-heuristic can be employed for far

larger problem instances.
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Table 2.5: (JS): Gaps and CPU seconds for CHM, the (EH)-heuristic

and the (SP)-heuristic with N = 10, T = 30

density low medium high

low TBO 0.2%/6.0% 0.5%/1.6% 0.2%/0.5%

running time 44/17/1 48/17/1 21/17/1

medium TBO 0.8%/12.1% 0.1%/3.4% 0.1%/5.0%

running time 742/29/3 712/19/1 85/19/1

high TBO 0.5%/15.0% 0.1%/3.9% 0%/6.0%

running time 1150/22/2 3973/21/1 127/19/1

Finally, we consider the case with item-dependent set-up costs only. Table 2.6 com-

pares the (EH)-heuristic and CHM, for the nine relevant item-TBO and problem density

values in Table 2.1 (As in Table 2.2, the CHM is terminated after 1 hour). All of our

conclusions regarding the quality of the (EH)-heuristic solutions and the running times

continue to apply for this special case of the (JIS)-model.
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Table 2.6: (JIS): Gaps and CPU seconds for CHM

and the (EH)-heuristic with item-dependent

fixed costs only (Kt = 0, N = 10, T = 15)

density low medium high

low item TBO 0.5% 0.5% 0.4%

running time 2/7 7/7 -/13

medium item TBO 1.7% 1.6% -1.1%

running time -/28 -/44 -/103

high item TBO 1.0% -0.7% -2.5%

running time -/41 -/126 -/358

Returning to the general (JIS)-model, Belvaux and Wolsey (2000, 2001) observe

that in many applications, at most one or two items may be ordered per period. The

authors refer to such models as ‘small bucket models’. Once again, the mechanics of the

(SP)- and (EH)-heuristic are straightforwardly adjusted to accommodate this restriction.

For small bucket models even the branch-and-bound methods of Section 2.5 are easily

adjusted. Choosing τ = α logT�, as in (2.24), this gives rise to a polynomial time

implementation of the heuristics for the (JIS)-model, where the complexity bound is

a factor O(N) or O(N2) larger than the corresponding complexity bound for the (JS)-

model.

Similarly, the mechanics of the (SP)- and (EH)-heuristic are easily adjusted to (i) add

capacity limits for individual items in each period, to (ii) allow for multiple capacitated

order batches in every period, as in Anily and Tzur’s (2004a,b) MIMV-problem, to (iii)

address the hierarchical planning problems in Graves (1982) or Van Roy and Wolsey
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(1987) which differ from the (JIS) model with capacity limits for each item only by

allowing the (joint) capacity to be increased with overtime at a linear penalty cost, or to

(iv) handle any of the other variants mentioned in Belvaux and Wolsey (2000, 2001).



Chapter 3

Probabilistic Analysis of Progressive

Interval Heuristics for Multi-Item

Capacitated Lot-Sizing Problems

3.1 Introduction

This paper conducts a probabilistic analysis of an important class of heuristics for

multi-item capacitated lot sizing problems. More specifically, we address the following

classical problem (P): a family of N items is to be procured from the same production

facility or outside supplier. The planning horizon consists of T periods (not necessarily

of equal length). Demands are specified for each item and each period of the planning

horizon. The aggregate order size, in any given period, is bounded by a capacity limit,

which may vary over the course of the planning horizon. The costs consist of inventory

45
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carrying, variable and fixed order costs. As to the latter, the fixed order cost in any

given period only depends on the period index, but not on the composition of the

order. The inventory and variable order costs are proportional with the end-of-period

inventories and order sizes, at item- and period-dependent cost rates. The objective is

to minimize total costs for the planning horizon while satisfying all demands, without

backlogging.

Despite a voluminous literature devoted to the general model (P), it continues to

present a major challenge to theoreticians and practitioners alike. The problem is NP

complete, even in the special case of a single item (N = 1), as shown by Florian et

al (1980). Until recently, exact and heuristic solution methods have only been suc-

cessfully applied to instances with a relatively low number of items and/or periods.

Chapter 2 of this dissertation investigated the following class of so-called progressive

interval heuristics. A progressive interval heuristic consists of J iterations, where, iter-

ation by iteration, the problem is solved, to optimality, over a progressively larger time

interval [1, T�], i.e. T1 ≤ T2 ≤ · · · ≤ TJ = T . When solving a given interval problem,

the necessary and sufficient conditions for a feasible extension to the remainder of the

planning horizon are appended as boundary conditions. To ensure that the computa-

tional complexity in each iteration remains manageable, the heuristic fixes, in iteration

�, all integer variables for periods 1 to T� − τ (for some τ > 0) and all continuous vari-

ables for periods 1 to some t� ≤ T�−1 at their optimal value after iteration � − 1. The

horizons are chosen such that 0 = t1 ≤ t2 ≤ · · · ≤ tJ while τ ≥ T� − T�−1, the number

of periods by which the horizon is expanded in the �-th iteration.

We characterize the asymptotic performance of the progressive interval heuristics
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as T goes to infinity, assuming the data are realizations of a stochastic process of the

following type: the vector of cost parameters follows an arbitrary process with bounded

support, while the sequence of aggregate demand and capacity pairs is generated as an

independent sequence with a common general bivariate distribution, which may be of

unbounded support. We show that important subclasses of the class of progressive

interval heuristics can be designed to be asymptotically optimal with probability one,

while running with a complexity bound which grows linearly with the number of items

N and slightly faster than quadratically with T . Our probabilistic analyses complement

the worst case analyses in Chapter 2 where asymptotic optimally is shown under condi-

tions which require that all demands and capacities are uniformly bounded and that the

aggregate capacity over a large enough interval of time exceed the aggregate demand

by at least a minimum slack value σ > 0. Both of these assumptions are somewhat

restrictive, in the context of an asymptotic analysis where very large planning horizons

T are considered.

For many types of complex (NP-complete) logistical planning problems, probabilis-

tic analyses have provided performance guarantees for various classes of heuristics,

fostering insights into which algorithmic approaches are effective for large size prob-

lems. One such planning area is that of vehicle routing, starting with the seminal papers

by Karp (1979) and Haimovich and Rinnooy Kan (1985); see Coffman and Lueker

(1996), Federgruen and Simchi-Levi (1992) and Anily and Bramel (1999) for sur-

veys. (Some of the planning models integrate vehicle routing with inventory planning

but, thus far, only in a context of demand processes that occur at constant rates.) Other

logistical planning areas supported by probabilistic analyses include (hierarchical) fa-
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cility location and sourcing models (e.g. Chan and Simchi-Levi (1996), Gallego and

Simchi-Levi (1997), Fisher and Hochbaum (1980), and Romeijn and Romero Morales

(2001)). See Bramel and Simchi-Levi (1997) for a general overview. Rhee and Tala-

grand (1987, 1989) and Rhee (1993) have shown how probabilistic analyses of a va-

riety of logistical planning problems can be based on specific large deviation results.

Our analyses, as well, are in part, based on such large deviation techniques. To our

knowledge, the probabilistic analyses in this paper represent the first such analyses

for inventory planning models with time-varying parameters (, otherwise referred to as

dynamic lot sizing problems).

We conclude this section with a brief review of the relevant literature beyond the

papers mentioned above. The (NP-) complexity of the problem arises from the super-

position of (joint) setup costs and capacity limits. Indeed, the problem is solvable in

O(NT logT ) time, if either the capacity constraints are relaxed or in the absence of

fixed order costs. In the former case, the problem decomposes into N independent

single item lotsizing problems for which one of the O(T logT ) methods by Aggarwal

and Park (1992), Federgruen and Tzur (1991) or Wagelmans et al. (1992) can be

used. In the latter case, the problem is solvable in O(NT logT ) time with Ahuja and

Hochbaum (2004)’s recent method.

There is a voluminous literature describing various heuristics for the general multi-

item model. We refer to Salomon (1990) and Kuik et al. (1994) for surveys of the

literature until 1994. State-of-the art solution methods include Belvaux and Wolsey

(2000, 2001), Stadtler (2003) and Suerie and Stadtler (2003). These methods are

all based on variants of progressive interval heuristics. See Chapter 2 for details and a
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more detailed literature review. Other than the above mentioned worst case analyses

in the latter paper, the only performance guarantees for heuristics for capacitated lot-

sizing problems with general time-dependent capacity limits are due to Gavish and

Johnson (1990) and van Hoesel and Wagelmans (2001). The latter developed a fully

polynomial approximation scheme for the general single-item model, after the former

proposed such a scheme for a more restricted version of the problem.

The remainder of this chapter is organized as follows: In Section 3.2, we specify the

model, the probability model generating its data and the class of progressive interval

heuristics. In Section 3.3, we establish almost sure asymptotic optimality for heuristics

in this class as well as their polynomial complexity bound. Section 3.4 concludes the

chapter with a discussion of the case where the items’ shelf life is uniformly bounded

e.g. because items are perishable.

3.2 The model and the class of progressive interval heuristics

The model employs the following data, where the index i ∈ {1, . . . , N} is used to dis-

tinguish between items and time periods are indexed by t. (Demands are represented

as multiples of the volume that consumes one unit of capacity):

cit = variable per unit order cost for item i in period t

hit = cost of carrying a unit of inventory of item i at the end of period t

Kt = setup cost incurred when an order is placed in period t

dit = demand for item i in period t; (dit ≥ 0)
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Dt = aggregate demand in period t =∑Ni=1 dit

Ct = order capacity, i.e. the maximum number of units which can be ordered in

period t.

We use the following set of decisions variables:

xit = order size for item i in period t; i = 1, . . . , N; t = 1, . . . , T

Yt =




1 if
∑N
i=1 xit > 0

0 otherwise

t = 1, . . . , T

Iit = ending inventory of item i in period t; i = 1, . . . , N; t = 1, . . . , T

Let I0t = the minimum aggregate inventory at the end of period t, such that a feasible

production / inventory plan exists for periods t+1, . . . , T . These minimum stock levels

are easily computed from the following recursion, which can be verified by induction:

I0t =
(
Dt+1 − Ct+1 + I0t+1

)+
, t = 1,2, . . . , T − 1, with I0T = 0 (3.1)

This is the well known Lindley equation, see e.g. Asmussen (1987). The following is
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a standard formulation:

(P) z∗ = min



T∑
t=1


KtYt +

N∑
i=1

(citxit + hitIit)



 (3.2)

s.t.

Iit = Ii(t+1) + xit − dit, i = 1, . . . , N, t = 1, . . . , T (3.3)

N∑
i=1

xit ≤ CtYt i = 1, . . . , N, t = 1, . . . , T (3.4)

N∑
i=1

Iit ≥ I0t t = 1, . . . , T (3.5)

xit ≥ 0; Iit ≥ 0; Yt ∈ {0,1} (3.6)

We assume that the model data are generated by the following probabilistic model:

the (2N + 1)T cost parameters {Kt, cit, hit} are generated by an arbitrary stochastic

process with support on a hypercube in the positive orthant of R(2N+1)T . As to the

sequence of aggregate demand and capacity pairs {(Dt, Ct) : t = 1, . . . , T},we assume:

(A) {(Dt, Ct) : t = 1, . . . , T} is a sequence of independent pairs of random variables,

all distributed like (D,C) with a general bivariate distribution, possibly with unbounded

support, such that the marginal distribution of D has a moment generating function,

i.e. E(eθD) exists for some θ > 0, δ = E(D) > 0 and the support of the distribution of

C is bounded from below by a constant C∗. Moreover, µ = E(C)− E(D) > 0.

The requirement that the demand distribution has a moment generating function

which is finite in the neighborhood of the origin covers most of the distributions com-

monly used in (stochastic) inventory models. (e.g. the Normal, Gamma, Negative Bi-

nomial or Weibull distributions). The condition merely precludes heavy-tailed demand

distributions which implies heavy-tailed distributions for the steady-state distribution
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of the reserve-stock variables
{
I0t
}
. The condition µ = E(C)− E(D) > 0 is necessary to

ensure that the generated problem instances be feasible as T becomes large. Let ψ(θ)

denote the cumulative generating function (cgf) of the random variable (D-C) which is

the logarithm of its moment generating function:

ψ(θ) = logE
[
eθ(D−C)

]
.

Since D has a finite moment generating function on some interval [0, θ̄], so does (D−C),

so that ψ(θ) <∞ on [0, θ̄]. Moreover, ψ(·) is differentiable with ψ(0) = 0 and ψ′(0) =

−µ < 0, by (A), so that ψ(θ) < 0 for all θ > 0, sufficiently small.

When the items have a limited shelf life, we show in Section 3.4 that our results

continue to apply under generalizations of condition (A), allowing for various forms of

intertemporal demand and capacity dependencies.

In a progressive interval heuristic, employing J iterations, the �-th iteration consists

of solving (P), with T replaced by T� and all (integer) Y -variables for periods 1, . . . , T�−τ

and all (continuous) x- and I-variables for periods 1, . . . , t� ≤ T�−1 fixed at their opti-

mal value in the � − 1st iteration. (In the first iteration, no restrictions apply to any of

the variables.) Thus, the number of unrestricted integer variables in each (except for

possibly the first) iteration is kept constant at τ . Since the complexity of any mixed

integer program is primarily determined by the number of (unrestricted) integer vari-

ables, the computational complexity remains manageable when choosing τ sufficiently

small, and from each iteration to the next it grows only moderately.

As in Chapter 2, we pay special attention to two extreme subclasses: (i) the Strict
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Partitioning heuristics (SP), with all (except for possibly the last) interval increment

T� − T�−1 = τ and t� = T�−1 = T� − τ ; (ii) the Expanding Horizon heuristics (EH)

with all t� = 0. The (SP)-heuristics are related to the Time Partitioning heuristics, see

Federgruen and Tzur (1999).

Thus, the (SP)-heuristics minimize the computational complexity of each interval

problem at the expense of providing minimal flexibility to the continuous variables.

The (EH)-heuristics, while of larger computational complexity, provide maximal flexi-

bility for the continuous variables and even for the integer variables, in case interval

increments T�−T�−1 < τ are chosen. Under such choices, even many of the setup deci-

sions made in one iteration, may be revisited in subsequent iterations, on the basis of

additional demand, cost and capacity information pertaining to additional periods. The

numerical study in Chapter 2 indicates that (EH)-heuristics can be used effectively to

solve moderate to large size problem instances and that the solutions generated come

very close to being optimal. Those generated by (SP)-heuristics typically exhibit larger

optimality gaps.

3.3 Almost sure asymptotic optimality

In this section, we show that both (SP)- and (EH)-heuristics can be designed to be simul-

taneously almost surely asymptotically optimal as well as of low polynomial complexity.

As with all (SP)-heuristics, we confine ourselves to (EH)-heuristics in which (with the

possible exception of the last iteration) exactly τ periods are appended to the tail of

the planning horizon, as we progress from one iteration to the next (T� − T�−1 = τ).
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We show that both heuristics, with cost values zSP and z(EH), respectively, are almost

surely (a.s.) asymptotically optimal if the interval increment τ is adjusted as a function

of T , where

τ = Ω (logT) , i.e. lim
T→∞

τ
logT

= ∞, e.g. (3.7)

τ = = η ⌈logT
⌉ζ , for some η > 0 and ζ > 1

To derive a specific complexity bound, we assume that each interval problem in each

iteration is solved with a tailored branch-and-bound procedure, i.e. the b&b-procedure

in Section 2.5 in which each non-leaf node of the tree is evaluated with lower bound

LB3, ibid.

Theorem 3.1 Consider a (SP)-heuristic with τ = η ⌈logT
⌉ζ for some η > 0 and ζ > 1.

The heuristic is asymptotically optimal , a.s. and it can be designed to run

in O(NTζ+1 log logT ) time as well.

Proof. Let c∗i > 0 denote the essential infimum of the stochastic process

{cit : t = 1, . . . , T}. Observe first that by the law of large numbers, with probability

one, lim infT→∞ z∗
T ≥ ∑Ni=1 ci∗ lim infT→∞ 1

T
∑T
t=1 dit =

∑N
i=1 ci∗δi > 0, with δi = E(dit).

(Note that δi > 0 for at least one i = 1, . . . , N since
∑N
i=1 δi = δ > 0.) In other words,

with probability one, the numerator in the optimality gap zSP−z∗
z∗ grows at least linearly

in T . It thus suffices to show,

lim
T→∞

1
T

[
zSP − z∗

]
= 0, a.s. (3.8)
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As in the worst-case analysis of Theorem 2.2 in Chapter 2, we transform an optimal

solution for the complete problem in two phases into a solution which is achievable

by the (SP)-heuristic. In Phase I, the optimal solution is transformed into one with all

intervals’ ending aggregate inventories equal to their I0-values. (Note that that the

solution generated by the (SP)-heuristic satisfies this property as well.) Let zI denote

its cost value. In Phase II, the composition of the reserve stock at the end of each of

the intervals is made identical to that of the solution of the (SP)-heuristic, resulting

in a solution with the cost value zII . This solution is one which is among the ones

considered by the (SP)-heuristic, i.e. zII ≥ zSP . Thus,

zSP − z∗
T

≤ z
II − z∗
T

= z
II − zI
T

+ z
I − z∗
T

(3.9)

Following the proof of Theorem 2.2 in Chapter 2 and given the (general) assumption

about the stochastic process which generates the cost parameters, ones verifies that

an integer Λ > 1 and constants B1 and B2 exist such that zI − z∗ ≤ (J − 1)B1 +

B2
∑J−1
�=1

∑T�
r=T�−Λ+1 Cr . If Λ > τ , the partial sums

{∑T�
r=T−Λ+1 Cr : � = 1, . . . , J − 1

}
may

overlap. However, zI−z∗ ≤ (J−1)B1+B2

⌈
Λ
τ

⌉∑T
r=T−(J−1)Λ+1 Cr is a valid upper bound.

Thus, z
I−z∗
T ≤ (J−1)

T

[
B1 + B2Λτ �Λ 1

(J−1)Λ
∑T
r=T−(J−1)Λ+1 Cr

]
and limT→∞ zI−z∗

T = 0 a.s.,

since limT→∞ J−1
T = limT→∞ τ−1 = 0 and since, with probability one,

limT→∞ 1
(J−1)Λ

∑T
r=T−(J−1)Λ+1 Cr = E(C1) < µ by the law of large numbers and the fact

that the sequence {Ct : t = 1,2, . . . } is an i.i.d. sequence of random variables.

To bound the additional cost incurred because of the Phase II transformation, let

∆c∗ = maxt maxi�=�[cit − c�t], ∆h∗ = maxt maxi�=�[hit − h�t], h∗ = infi,t hit and K∗ =
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maxt Kt and note that ∆c∗ = O(1), ∆h∗ = O(1) and K∗ = O(1) as T →∞ while h∗ > 0.

The solution obtained after Phase I and the solution generated by the (SP)-heuristic,

both have IT� = I0T� for all � = 1, . . . , J. In Phase II, we obtain the desired composition of

the ending inventory at the end of the J intervals by changing (only) the item identity of

at most (all of the) I0T� units in the ending inventory of the �−th interval, without any ad-

ditional changes in the order- and inventory plans. The transformed solution remains

feasible, incurs no additional fixed order costs and adds at most
∑J−1
�=1 I

0
T�(∆c

∗+L�∆h∗)

in variable costs, where L� denotes the shelf life of the oldest unit in the reserve stock

at the end of period T�. Thus, to prove (3.8) it suffices to show that

lim
T→∞

1
T

J−1∑
l=1

I0T�
(
∆c∗ + L�∆h∗

) = 0, a.s. (3.10)

Recall that
{
I0t
}

in (3.1), when traversed backwards, is a Lindley process. Since the

pairs {(Dt, Ct)} are i.i.d, and since µ > 0,
{
I0t
}

has a limiting distribution I0 (i.e.

limt→∞ I0(T)
w= I0, where the convergence is in distribution.) with E(I0) < ∞, see

Asmussen (1987, §8.1). Moreover, in view of the remaining assumption in (A), the dis-

tribution of I0 has an exponential tail, i.e. there exist constants α and β > 0 such

that Pr[I0 > x] ∼ αe−βx , x → ∞ (i.e. limx→∞ Pr[I0>x]
αe−βx = 1) (see Assmussen (1987,

§12.5). Thus, for some x0 > 0, Pr[I0 > x] ≤ 2αe−βx , for all x > x0. Finally, let

Ī(T) = maxt=1,... ,T I0t denote the largest minimum reserve stock required over the en-

tire planning horizon. Since I0 has the same distribution as [D − C + I0], and since

0 = I0T ≤st I0, one easily verifies by complete induction that I0t ≤st I0 for all t = 1. . . . , T .
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Let ñ(T) = √τ logT denote the geometric mean of τ and logT and note from (3.7)

that

lim
T→∞

logT
ñ(T)

= 0 and lim
T→∞

ñ(T)
τ

= 0. (3.11)

We first show that

lim
T→∞

Pr
[
L� ≤ ñ(T) for all � = 1, . . . , J − 1

] = 1 (3.12)

i.e. asymptotically the maximum shelf-life of any unit in the reserve stock at the

end of any of the intervals (in the Phase I solution) is almost surely bounded by ñ(T).

Under (3.12) we have almost surely that (3.8) holds since

0 ≤ lim
T→∞

1
T

I−1∑
�=1

I0T�(∆c
∗ + L�∆h∗)

≤ lim
T→∞

{
(∆c∗ + ñ(T)∆h∗)

T
(J − 1)

}
lim
T→∞

1
J − 1

J−1∑
l=0

I0T�

= h∗
(

lim
T→∞

ñ(T)
τ

)
E(I0) = 0, a.s.

where the first equality follows from the the fact that the
{
I0t
}
-process is ergodic, so

that a long-run average, sampled at equidistant epochs, converges with probability one

to the expected value of the limiting distribution, while the second equality follows

from (3.11).

It remains to prove (3.12). Note that Pr[L1 > ñ(T) or L2 > ñ(T) or . . . LJ−1 >

ñ(T)] ≤∑J−1
l=1 Pr[L� > ñ(T)]. Choose 0 < θ < β such that ψ(θ) < 0. To bound each of
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the terms in the sum, consider first the conditional probability Pr[L� > ñ(T)]|IT� = i0�],

which is bounded by Pr
[∑T�

r=T�−n(T)+1(Cr −Dr) ≤ i0�|IT� = i0�
]

with n(T) = ñ(T) −
∆c∗+K∗
h∗ .

(If a unit, in stock at the end of period T�, has a shelf life larger than ñ(T), this

implies that a full capacity order is placed is in each of the periods in the interval

[T� − n(T) + 1, . . . ..., T�], for otherwise the procurement of this unit could be post-

poned till some period in this interval with slack capacity, saving at least ñ(T)−n(T)

periods’ carrying costs, i.e. at least (∆c∗ + K∗), more than offsetting any additional

order costs. However, given the condition It� = i0�, this situation can only happen if

∑T�
r=T�−n(T)+1(Cr −Dr) ≤ i0�.) Thus,

Pr
[
L� > ñ(T)|i0�

]
≤ Pr




T�∑
r=T�−n(T)+1

(Cr −Dr) ≤ i0�|IT� = i0�




= Pr




T�∑
r=T�−n(T)+1

(Dr − Cr) ≥ −i0�|IT� = i0�




= Pr


n(T)∑
l=1

(Dr − Cr) ≥ −i0�

 (3.13)

≤ exp


−n(T)


−θi0�
n(T)

−ψ(θ)





where the second equality follows from the fact that I0T� only depends on the de-

mand and capacity values in periods T� + 1, . . . , T , see (1), so that the conditional dis-

tributions of {(Dr −Cr |I0T�) : r = T�−n(T)+1, . . . , T�} coincide with the unconditional

distributions {Dr − Cr : r = T� −n(T)+ 1, . . . , T�} and hence those of {D1, . . . ,Dn(T)}

by the i.i.d. assumption of {(Dt, Ct)}∞t=1. The last inequality in (3.13) follows from Cher-
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noff’s inequality. We thus obtain the following bound on the unconditional probability

Pr[L� > ñ(T)] ≤ EI0T�

{
exp(−n(T)ψ(θ)) exp(θĪT�)

}
(3.14)

≤ exp(−n(T)ψ(θ))EĪr exp(θĪT )

Note that

E exp
{
θĪ(T)

}

= −
∫∞

0
eθxd[1− Pr(Ī(T) ≤ x)] = 1+

∫∞
0
θeθxPr[Ī(T) > x]dx

= 1+
∫∞

0
θeθxPr[I01 > x or I02 > x or . . . I0T > x]dx

≤ 1+
T∑
t=1

∫∞
0
θeθxPr[I0t > x]dx

≤ 1+
T∑
t=1

∫∞
0
θeθxPr[I0 > x]dx = 1+ T

∫∞
0
θeθxPr[I0 > x]dx (3.15)

≤ 1+ T
[∫ x0

0
θeθxPr[I0 > x]dx +

∫∞
x0
θeθx2αe−βxdx

]

≤ 1+ T
[∫ x0

0
θeθxdx + 2αθ

(β− θ)e
e(θ−β)x0

]
= 1+ Tb
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with b = eθx0−1+ 2αθ
(β−θ)e

(θ−β)x0
, where the second inequality follows from I0t ≤st I0,

for all t. Thus, with a = −ψ(θ) > 0:

0 ≤ lim
T→∞

Pr[L1 > ñ(T) or L2 > ñ(T) or . . . LI−1 > ñ(T)]

≤ lim
T→∞

J−1∑
l=1

Pr
[
L� > ñ(T)

]

≤ lim
T→∞

{(J − 1) exp{−an(T)} (1+ Tb)

= b lim
T→∞

{
T 2

τ
exp(− logT

an(T)
logT

)
}

= b lim
T→∞

T 2

τ
1

T
an(T)
logT

= 0

where the last inequality follows from (3.14) and (15) and the last equality from

(3.11). This proves (3.12), hence (3.10) and (3.9).

It remains to he shown that when τ = η(logT)ζ�, with ζ > 1, the progressive in-

terval heuristic runs in O(NT 1+ζ logT ) time, when each interval problem is solved with

the above described b&b method. The discussion in Section 2.5 shows that evaluation

of any node of a b&b tree requires O(Nτ logτ) time. Since this needs to be done at most

2τ times to evaluate the complete tree, and since τ = O(Tζ ) interval problems need to

be solved, the complexity bound follows immediately.

The same simultaneous (almost sure) asymptotic optimality and polynomial com-

plexity can be obtained for the above (EH)-heuristic, under the same choice for the

interval increment τ as in (3.11). The complexity of this (EH)-heuristic is

O(T log logT/(logT)ζ−1) larger than that of the (SP)-heuristic. Nevertheless, complexity

grows only linearly with N and (only) slightly faster than cubically with T:
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Theorem 3.2 Consider an (EH)-heuristic with τ = η
⌈
(logT)ζ

⌉
for some η > 0 and ζ >

1. The heuristic is asymptotically optimal a.s. and can be designed to run in

O(NT 2+ζ/(logT)ζ−1) time.

Proof: The proof is analogous to that of Theorem 3.1, with only the following mod-

ifications: The Phase II transformation should modify the composition of the reserve

stock at the end of periods T1, T2, . . . , TJ=1 to that prevailing at the end of the �-th

iteration of the (EH)-heuristic. (In the case of the (EH)-heuristic, this composition may

change in subsequent iterations). As shown in Theorem 2.2(b) in Chapter 2, a third

Phase transformation is necessary to obtain a solution which is is among the ones con-

sidered by the (EH)-heuristic, but this third transformation only reduces the cost value.

The derivation of the complexity bound is again analogous, except that the evaluation

of a single node in one of the b&b trees now requires O(NT logT ) time.

3.4 Products with limited shelf life

Thus far, we have assumed that items can be kept in stock for an unlimited amount

of time. In this Section, we address the situation where the shelf life of each item is

bounded by an (integer) constant λ, perhaps because the items are perishable. We refer

to the survey paper by Nahmias (1982) for a review of inventory models with limited

shelf lives. Within the context of dynamic lot sizing models, the complication of a

fixed shelf life has not been addressed until Hsu (2000) who showed that the single

item uncapacitated model can be solved in O(T 2) time. (For this case, Hsu addresses,

in addition, more general life time models and more general order and inventory cost
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functions then those used in (P).)

We show that, in the presence of a limited shelf life, almost sure asymptotic optimal-

ity of (SP)- and (EH)-heuristics can be established under conditions even more general

than (A), for example:

(Af ) The sequence {(Dt, Ct)} is strongly ergodic, i.e. for any Lipschitz continuous

function g : R→ R, there exists a constant G such that

lim
T→∞

1
T

T∑
t=1

g((Dt, Ct); (Dt+1, Ct+1); (Dt+Λ, Ct+Λ)) = G a.s. (3.16)

Moreover, 0 < µ
def= limT→∞ 1

T
∑T
t=1 Ct − limT→∞ 1

T
∑T
t=1Dt (a.s.).

The condition is related to that of asymptotic mean stationarity, see e.g. Gray (1990).

Beyond the case of i.i.d. aggregate capacity and demand pairs considered under (A),

(Af ) encompasses a large variety of processes, for example:

(I) {(Dt, Ct)} is stationary and ergodic

(II) {(Dt, Ct)} is a so-called ‘world driven’ process. Here, the distribution of (Dt, Ct)

is time invariant but it depends on the state of the world Wt , with {Wt} a Markov

process with a finite or countable state space which is ergodic (i.e., the Markov

chain has a single positive recurrent set of states). Thus the conditional dis-

tributions {(Dt, Ct)|Wt = w} are time-invariant. Moreover, limt→∞Wt
w= W and

limt→∞(Dt, Ct)
w= ((D,C)|W). See Zipkin (2000) for a detailed discussion of the
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use of world driven demand processes in inventory models.

(III) A third type of process satisfying (Af ) and modeling different types of intertem-

poral correlations, is where the process {(Dt, Ct)} is autoregressive, e.g. a stable

ARMA(p,q) process, i.e.

Dt =
p∑
i=1

ϕiDt−i +
q∑
j=1

ψjεt−j + εt ∀t (3.17)

Ct =
p∑
i=1

ϕ̂iCt−i +
q∑
j=1

ψ̂jε̂t−j + ε̂t ∀t (3.18)

where {εt}+∞t=−∞ and {ε̂t}+∞t=−∞ are independent sequences of i.i.d. random vari-

ables with finite second moments. A sufficient condition for the processes to be

stable is that the characteristic polynomials Φ(z) =∑pi=1ϕiz
i [Φ̂(z) =∑pi=1 ϕ̂iz

i]

and Ψ(z) = ∑qi=1ψiz
i [Ψ̂(z) = ∑qi=1 ψ̂iz

i] do not have common (complex) roots

and that the roots of the former are outside the unit circle.

Lemma 3.1 Assume the process {(Dt, Ct)} is of type (I)–(III). Then {(Dt, Ct)} is strongly

ergodic.

Proof: (I) Immediate, see e.g. Proposition 6.31 in Breiman (1992).

(II) The process {(Wt,Wt+1, . . . ,Wt+λ)} is a Markov process, whose Markov chain has

a single positive recurrent set of states, i.e. there exists a state of the process with

a finite expected recurrence time. Almost sure convergence of the limit to the left

of (3.16) then follows from the renewal reward theorem.

(III) It suffices to prove strong ergodity of {Dt} and {Ct} separately. We prove the
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former; the proof of the latter is identical. Since the ARMA process is stable,

there exists a constant 0 < a < 1 such that Dt =
∑t
j=0αjεt−j , with |αj| < aj , see

e.g. Samorodnitsky and Taqqu (1994). The sequence {Dt} is non-stationary. Let

D0
t
def= ∑∞

j=0αjεt−j . {D0
t } is clearly stationary and it is well known to be ergodic.

Fix a function g : Rλ → R that is Lipschitz continuous. By the argument for (I),

there exists a constant G such that limT→∞ 1
T
∑T
t=1 g(D

0
t ,D

0
t+1, . . . ,D

0
t+λ) = G a.s..

To show that

limT→∞ 1
T
∑T
t=1 g(Dt,Dt+1, . . . ,Dt+Λ) = G a.s., as well, it suffices to show that for

any δ > 0,

| lim
T→∞

1
T

T∑
t=1

[g(Dt,Dt+1, . . . ,Dt+λ)− g(D0
t , . . . ,D

0
t+λ)]| < δ a.s. (3.19)

Since for any integer n ≥ 1,

| lim
T→∞

1
T

T∑
t=n
[g(Dt,Dt+1, . . . ,Dt+Λ)− g(D0

t ,D
0
t+1, . . . ,D

0
t+Λ)]|

≤ lim
T→∞

1
T

T∑
t=n

|g(Dt,Dt+1, . . . ,Dt+Λ)− g(D0
t ,D

0
t+1, . . . ,D

0
t+Λ)|

it follows from the Lipschitz continuity of g(·) that it suffices to show, for any

δ > 0, that an integer n ≥ 1 exists such that

limT→∞ 1
T
∑T
t=n |Dt −D0

t | ≤ limT→∞ 1
T
∑T
t=n

∑∞
j=t+1 |αj||εt−j|

≤ limT→∞ 1
T
∑T
t=n

∑∞
j=t+1 aj|εt−j| = limT→∞ 1

T
∑T
t=n at+1∑∞

j=0 aj|ε−j−1|

≤ limT→∞
∑T
t=n at+1

{
limr↑1

∑∞
j=0 rj|ε−j−1|

}

= limT→∞ 1
T
∑T
t=n at+1

{
limM→∞ 1

M+1

∑M
j=0 |ε−j−1|

}
≤ an+1E|ε| < δ a.s.
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where the equality follows from the Abel-Tauberian theorem and the next to last

inequality from the law of large numbers. (Since the random variable ε has a

finite second moment, E |ε| < ∞.) The last inequality is satisfied for all n ≥

	log(ρ/E|ε|)/ loga
.

To pursue the algorithm’s performance analysis, note that I0t , the minimum re-

serve stock at the end of period t is now given by:

I0,ft = max
t+1≤s≤t+λ

s∑
r=t+1

(Dr − Cr) (3.20)

instead of (3.1). (Using repeated substitutions in (3.1), note that I0,ft = I0t when

λ = ∞) In other words, assuming that a feasible solution exists, to ensure that a

solution for the first t periods [1, . . . , t] can be extended into a feasible solution

over the complete horizon [1, . . . , T ], it is necessary and sufficient that It ≥ I0,ft .

(If It < I
0,f
t , aggregate demand in the periods t+1, . . . , s (for some t+1 ≤ s ≤ t+λ)

exceeds (
∑s
r=t+1 Cr + It), so demand in [t + 1, s] can not be satisfied even when

placing a full capacity order in each of the periods of this interval. At the same

time, if It ≥ I0,ft , the first period whose demand can not be met, has a period

index greater than t + λ and any additional inventory at the end of period t is of

no use to meet this demand.)

Theorem 3.3 Assume items have a fixed shelf life time λ > 0 and (Af ) holds.

(a) Consider an (SP)-heuristic with τ = η ⌈logT
⌉

for some η > 0. The heuristic is

asymptotically optimal, a.s., and it can be designed to run in O(N2T 2 logT(logN+
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log logT)2) time as well.

(b) Consider an (EH)-heuristic with τ = η ⌈logT
⌉

for some η > 0. The heuristics is

asymptotically optimal, a.s., and it can be designed to run inO
(
N2T 4(logN + logT + log2N/ lo

time as well.

Proof: The proof is analogous to that of Theorem 3.1 and 3.2 and is, in fact,

simpler.

limT→∞ zI−z∗
T = 0 a.s., is verified as in the proof of Theorem 3.1. Moreover, it

was shown there that for limT→∞ zII−zI
T = 0 a.s., it is sufficient to verify that (3.10)

holds. Since L� ≤ λ, (3.10) reduces to showing that limT→∞ 1
T
∑T
t=1 I

0,f
t converges

to a constant a.s.. This, however, follows from (Af ), since, by (16), I0,ft is a Lips-

chitz continuous function of {(Dt+1, Ct+1), (Dt+2, Ct+2), . . . , (Dt+λ, Ct+λ)}.

We now verify the complexity bounds. Under a fixed life time, the minimum cost

network flow problem to be solved in each node of the b&b-trees, associated with

the different interval instances, now needs to be solved by a standard method,

rather than the Ahuja and Hochbaum (2004) method. The best strongly poly-

nomial time algorithm to solve minimum cost network flow problems is due to

Orlin (1989). The network flow model has a source, a sink and two sets of nodes;

the first set has a node for every period and the second one has a node for every

period / item combination. Thus, the model has O(Nτ) nodes and O(Nτ) arcs in

the (SP)-heuristic and O(NT ) nodes and arcs in the (EH)-heuristic. Orlin’s method

solves the problem therefore in O(N2τ2 log2Nτ) and O(N2T 2 log2NT ), respec-

tively. Since J = T/τ interval instances are solved and since in each, in the worst
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case, all 2τ nodes of the b&b tree need to be evaluated, the complexity bounds

follow readily.

Acknowledgment: We are greatly indebted to Assaf Zeevi for many helpful sug-

gestions and comments regarding earlier versions of this chapter.



Chapter 4

Dynamic Pricing Strategies for

Multi-Product Revenue Management

Problems

4.1 Introduction

Consider a firm that owns a fixed capacity of a certain resource that is consumed in

the process of producing or offering multiple products or services, and which must

be consumed over a finite time horizon. The firm’s problem is to maximize its total

expected revenues by selecting the appropriate dynamic controls. We will consider two

well studied problem formulations. In the first, the firm is assumed to be a monopo-

list or to operate in a market with imperfect competition, and thus to have power to

influence the demand for each product by varying its price. In this setting, the firm’s

68
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problem is to choose a dynamic pricing strategy for each of its products in order to

optimize expected revenues. In the second situation, prices are assumed to be fixed ei-

ther by the competition or through a higher-order optimization problem, and the firm’s

problem is now to choose a dynamic capacity allocation rule that controls when to ac-

cept new requests for each of these products. In the sequel, these two problems will be

referred to as the ‘dynamic pricing’ and ‘capacity control’ formulations, respectively.

Revenue management problems of that sort originated in the late 1970’s in the context

of the airline industry, and have since been successfully introduced in a variety of other

areas such as hotels, cruise lines, rental cars, retail etc. For example, the first of these

problems may arise in the retail industry, while the second one tends to be associated

with the airline industry (although there are examples of airlines that practice revenue

management through a dynamic pricing policy as well).

Both of these problems have been studied quite extensively in the revenue manage-

ment literature, in each case highlighting the structure of the optimal controls, propos-

ing near-optimal heuristics, and evaluating their performance in extensive numerical

studies for both stylized examples as well as real-life applications. This paper illus-

trates how these two problems can be reduced to a common formulation and thus be

treated in a unified manner, and explores some of the consequences of this formula-

tion. Broadly speaking this is done as follows: Consider a firm that owns capacity of a

single resource and offers multiple products, and suppose for now that the aggregate

rate at which capacity is consumed is given. One can then compute the vector of prod-

uct prices or capacity controls in each case in order to maximize the instantaneous

expected revenue subject to the constraint that the aggregate capacity consumption
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equals the aforementioned rate. This is akin to the basic microeconomics problem of

resource allocation subject to a budget constraint. Its solution, which in some cases can

be obtained in closed form, defines an aggregate expected revenue rate as a function of

the capacity consumption rate, and identifies the optimal way of translating the latter

into a vector of product-level controls. One can now reformulate both the ‘dynamic

pricing’ and the ‘capacity control’ problems as ‘single resource, single product’ pricing

problems, where the firm controls the instantaneous resource consumption rate and

where revenues are accrued according to appropriate aggregate revenue function. Pric-

ing and capacity decisions are then extracted from the optimal capacity consumption

rate in the manner described above.

This formulation constitutes the main modelling contribution of the Chapter, which

then proceeds to explore some of its theoretical and practical implications in dynamic

pricing and capacity control revenue management problems. Specifically, we show that

the multi-product dynamic pricing problem introduced by Gallego and van Ryzin

(1997) and the capacity control problem of Lee and Hersh (1993) can be recast within

this common framework, and be treated as different instances of a single-product pric-

ing problem for appropriate concave revenue functions (Propositions 4.1 and 4.2). This

highlights the common structure of the pricing and capacity control problems and al-

lows us to treat both in a unified framework. This, of course, recovers well-known

structural results regarding the monotonicity properties of the value function and the

associated controls (see Propositions 4.3 and Corollary 4.2) that were previously de-

rived in the literature while studying each of these problems in isolation, see, e.g.,

Gallego and van Ryzin (1994, 1997), Lee and Hersh (1993), Lautenbacher and
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Stidham (1999), Zhao and Zheng (2000), and the recent book by Talluri and van

Ryzin (2004a). Moreover, Corollary 4.1 establishes that the optimal multi-product pric-

ing policy has a certain monotone and nested structure. Although our analysis is done

in a stationary setting, most of our results extend to allow for non-stationary demand

models, in which case the associated dynamic pricing single-product problems are of

the form studied by Zhao and Zheng (2000).

A similar type of demand aggregation appeared in Talluri and van Ryzin (2004)

while analyzing a capacity control problem for a system where customer behavior is

captured through a discrete choice model. Demand aggregation techniques have been

exploited in the past in the numerical solution of the dynamic programs associated with

these revenue management problems. Finally, similar ideas of demand aggregation

arise in the context of ‘equivalent workload formulations’ in stochastic network theory;

see Harrison and van Mieghem (1996) for background, and Maglaras (2003b) for a

recent application of this idea in the context of a joint pricing and scheduling problem.

This new formulation leads to several qualitative and quantitative insights. The first

concerns the derivation of simple pricing and capacity control heuristics. Specifically,

both multi-product formulations are reduced into dynamic pricing problems for single-

product models of the type studied by Gallego and van Ryzin (1994). Based on their

analysis this implies that a static pricing heuristic is optimal for the deterministic and

continuous (fluid) approximation of the underlying problems, and asymptotically opti-

mal in an appropriate sense for the original problems. This was already observed by

Gallego and van Ryzin (1997), but their characterization of that policy in the multi-

product setting was implicit. Our reduction of the multi-product problem to an ap-
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propriate single-product one leads to a closed-form characterization of that fixed-price

heuristic (see Proposition 4.4); see also the review article by Bitran and Caldentey

(2003) for a discussion of deterministic multi-product pricing problems. In contrast

to the dynamic programming analysis discussed above, the fluid formulation of these

problems allows us to consider a more general class of models where products may

differ with respect to their capacity requirements. Based on the solution of the fluid

formulation we propose three heuristics: (i) a static pricing heuristic; (ii) a static pricing

heuristic applied in conjunction with an appropriate capacity allocation policy; and (iii)

a ‘resolving’ heuristic that re-evaluates the fluid policy as a function of the current state

and time-to-go (which is derived by expressing the fluid solution in feedback form).

The first of these heuristics was suggested by Gallego and van Ryzin (1997). Once

prices are fixed, the firm’s problem has been reduced to one of capacity control, of the

type analyzed in Lee and Hersh (1993), which motivates the second heuristic. Policies

that combine static prices with capacity controls as in (ii) have been suggested in other

papers such as McGill and van Ryzin (1999), Feng and Xiao (2004), and Lin et. al.

(2003). Finally, the ‘resolving’ heuristic (iii) is widely applied in practice, but to the best

of our knowledge has not been analyzed theoretically thus far. The only exception was

the negative result of Cooper (2002) that illustrated through an example that resolving

may in fact do worse than applying the static fluid policy.

Subsection 4.4.2 establishes that all three heuristics achieve asymptotically optimal

performance under fluid scaling, i.e., in the spirit of Gallego and van Ryzin (1997)

and Cooper (2002) (Propositions 4.5 to 4.7). These results show that the phenomenon

demonstrated in Cooper’s example does not persist in problems with large capacity
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and demand, where in fact resolving achieves the asymptotically optimal performance.

Moreover, the numerical results of Section 4.5 illustrate that the dynamic heuristics (ii)

and (iii) tend to improve the firm’s performance.

The second insight is structural and offers a partial characterization of good pricing

and capacity allocation policies. The formulation advanced in this paper and specifi-

cally the subproblem of translating a capacity consumption rate into a set of product-

level controls that jointly maximize instantaneous revenue, defines an efficient frontier

for the firm’s pricing and capacity control strategy. This captures in a tractable way the

interactions between products due to cross-elasticity effects and the joint capacity con-

straint. The idea of an efficient frontier has also appeared in Talluri and van Ryzin

(2004) in the context of a capacity control problem for a model with customer choice

among products, and in Feng and Xiao (2000, 2004) while studying pricing problems

with a predetermined set of price points; the latter set of papers uses the term maxi-

mum increasing concave envelope.

While the main emphasis of this paper is not computational, it is worth noting that

the control dimension reduction presented in this paper may lead to computational

simplifications in cases where the subproblem of inferring the optimal demand rates

given an aggregate consumption rate is solvable in closed-form. While this is not gen-

erally true, it does admit a simple solution in cases such as the linear demand model

and the multinomial logit model (both are reviewed in Section 4.5), and it also leads to

a simple characterization of the revenue function in the capacity control formulation.

Moreover, it leads to algorithmic and computational simplifications in the case where

there is a fixed set of price points for each product, as in the model studied in Feng
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and Xiao (2004).

Finally, we extend this formulation to the network case. The same decomposition

in (a) choosing the aggregate resource consumption rates and then (b) translating these

decisions to a vector of product prices still holds. As expected, the complexity of

each of these steps increases in the network setting. However, the structural insights

gleaned by this problem formulation provide a promising direction to follow in devel-

oping efficient network controls.

The remainder of the paper is structured as follows. This section concludes with

some additional comments on the related literature. Section 4.2 describes the model

and the associated problem formulations. Section 4.3 demonstrates the reduction of

the dynamic programming formulations to that of a single-product pricing problem,

and derives some of its structural properties. Section 4.4 discusses several insights and

extensions that hinge on the previous results, and Section 4.5 provides some numerical

illustration of our results and offers some concluding remarks.

The papers by Elmghraby and Keskinocak (2002), Bitran and Caldentey (2003),

and McGill and van Ryzin (1999), and the book by Talluri and van Ryzin (2004a)

provide comprehensive overviews of the areas of dynamic pricing and revenue manage-

ment. The modelling framework adopted in this paper closely matches that of Gallego

and van Ryzin (1994, 1997), and, as in their work, we also partly focus on deterministic

and continuous-dynamics (fluid) approximations of the underlying discrete problems

to derive simple heuristics for the multi-product revenue management problems. See

also Kleywegt (2001) for a fluid model approach to multi-product network revenue

management problem. Standard references on revenue management with capacity con-
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trols are Lee and Hersh (1993), Brumelle and McGill (1993) and Lautenbacher and

Stidhman (1999).

4.2 Single Resource, Multi-Product Model

This section poses the multi-product dynamic pricing and capacity control problems.

We start with the former, which follows the model of Gallego and van Ryzin (1997),

and then provide the necessary changes to formulate the latter, which is the model

analyzed by Lee and Hersh (1993).

4.2.1 Dynamic pricing model

Consider a firm that is endowed with C units of capacity of a single resource that is

used in producing or offering multiple products or services, indexed by i = 1, . . . , n.

Each unit of product i consumes one unit of capacity, and for simplicity we assume

that C is integer valued. There is a finite horizon T over which the resources must be

used, and capacity cannot be replenished up to that time. The firm is either a monop-

olist or is assumed to operate in a market with imperfect competition, and, in that,

has power to influence the demand for each product by varying its menu of prices. Let

p(t) = [p1(t), . . . , pn(t)] denote the vector of prices at time t. The demand process

is assumed to be n-dimensional non-homogeneous Poisson process with rate vector λ

determined through a demand function λ(p(t)), where λ : P → L, P ⊆ Rn is the set of

feasible price vectors, and L = {x ≥ 0 : x = λ(p), p ∈ P} ⊆ Rn+ is the set of achievable

demand rate vectors. We assume that L is a convex set. A simple interpretation of the
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demand model in the single product case is as follows: if the total arrival rate of poten-

tial customers is Λ, and each customer has an independent identically distributed (IID)

reservation price (i.e., maximum price they are willing to pay) for the product drawn

from some distribution F , then customers that have reservation prices ≥ p choose to

buy the product and λ(p) = Λ(1 − F(p)). Following Gallego and van Ryzin (1994,

1997) we consider regular demand functions that satisfy the following requirements.

In the sequel, x′ will denote the transpose of any vector or matrix x (the use of T is

reserved for the time horizon), and for any real number y , y+ := max(0, y).

Assumption 4.1 A demand function is said to be regular if it is a continuously differen-

tiable, bounded function, and: (a) for each product i, λi(p) is strictly decreasing in pi,

(b) limpi→∞ λi(p) = 0 (i.e., consumers have bounded wealth), and (c) the revenue rate

p′λ(p) =∑ni=1 piλi(p) is bounded for all p ∈ P and has a finite maximizer p̄.

Note that this class of demand functions incorporate product complementarity and

substitutions effects. For ease of exposition, we assume that the demand function is

stationary. The extension to a non-stationary demand model can be done along the

lines of Gallego and van Ryzin (1994, 1997) and Zhao and Zheng (2000). Also,

this demand model assumes that customer decisions only depend on the current price

vector and not on past and/or future pricing decisions. A more general model would

allow customers to learn the firm’s pricing policy and adjust their actions accordingly,

and thus incorporate the strategic interaction between the firm and the customers’

collective behavior. While this may seem appealing, it leads to a complicated game-

theoretic analysis, and is often avoided both in the revenue management literature and
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in practice. See Vulcano et. al. (2002, § 4.3) for a discussion of this issue with

appropriate pointers to the literature.

We assume that there exists a continuous inverse demand function p(λ), p : L → P,

that maps an achievable vector of demand rates λ into a corresponding vector of prices

p(λ). This allows us to view the demand rate vector as the firm’s control, and once

this is selected infer the appropriate prices using the inverse demand function. The

expected revenue rate as a function of the vector of demand rates, λ, is defined by

R(λ) := λ′p(λ). In the sequel we will assume that the revenue rate functional R(·) is

continuous, bounded and strictly concave.

Example: Under a linear demand model, the demand for product i is given by

λi(p) = Λi − biipi −
∑
j≠i
bijpj,

where Λi is the market potential for product i and bii, bij are the price and cross-price

sensitivity parameters. This can be expressed in vector form as λ(p) = Λ− Bp, for the

obvious choice of Λ, B. The inverse demand function is then given p(λ) = B−1(Λ− λ),

and the revenue function is given by R(λ) = λ′B−1(Λ− λ). Assumption 1 requires that

bii > 0 for all i. To ensure that B−1 exists and the inverse demand function is well

defined, and that the revenue function is concave we further require that either bii >

∑
j≠i |bji| or bii >

∑
j≠i |bij| for all i; both conditions guarantee that B is invertible

and that its eigenvalues have positive real parts (see Horn and Johnson (1994, Thm.

6.1.10). If the products are substitutes (bij ≤ 0 for all j ≠ i), the first condition reduces

to
∑
j bji > 0, which implies that an increase in pi leads to a reduction in the total
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demand for all products. Alternatively, the second condition says that the effect of a

marginal increase in pi on the demand for product i is bigger than that of a marginal

increase on the prices of all other products.

The problem that we address is roughly described as follows: given an initial ca-

pacity C for that resource, a selling horizon T , and a demand function that maps the

menu of prices into a set of demand rates for each product, the firm’s goal is to choose

a non-anticipating dynamic pricing strategy for each product in order to maximize its

total expected revenues. The restriction to non-anticipating policies implies that the

decisions at time t can only depend on the current state of the system as well as the

time history up to time t, and not on future events.

We assume that the salvage value of remaining capacity at time T is zero. (Oth-

erwise, at least in the case where the salvage value per unit of capacity at time T

is constant, one could modify the objective function to be total expected revenue

in excess of the salvage values.) We will adopt a discrete-time formulation, which

assumes that time has been discretized in small intervals of length δt, indexed by

t = 1, . . . , T , such that P(product i arrival in [0, δt]) = λiδt + o(δt) for all products i,

and P(product i and j arrivals in [0, δt]) = λiλj(δt)2 + o((δt)2), where o(x) implies

that o(x)/x → 0 as x → 0. With slight abuse of notation, in the sequel we will write

λi in place of λiδt; i.e., λi will not refer to the rate of the underlying Poisson arrival

process, but to the probability that a product i request occurs in each time interval. We

will refer to λi as the demand or the buying probability for product i, interchangeably.

Hence, the corresponding demand random vector for period t, denoted by ξ(t;λ), is

Bernoulli with probabilities λ that are controlled by the vector of posted prices, and
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P(ξi(t) = 1) = λi(p(t)) and P(ξi(t) = 0) = 1 − λi(p(t)) for all products i. As stated

above, we will treat the demand rates λi as the control variables and infer the appro-

priate prices through the inverse demand relationship. The discrete-time formulation

of the dynamic pricing problem of Gallego and van Ryzin (1997) is as follows:

max
{λ(t), t=1,... ,T}


E

 T∑
t=1

p(λ(t))′ξ(t;λ)


 :

T∑
t=1

e′ξ(t;λ) ≤ Ca.s. and λ(t) ∈ L∀t

 ,
(4.1)

where e is the vector of ones of appropriate dimension and ‘a.s.’ stands for almost

surely.

4.2.2 The Single-Resource Capacity Control Problem

The second problem that we will consider is the one studied by Lee and Hersh (1993)

that takes the product prices as exogenously fixed and strives to optimize over the

capacity allocation decisions. In more detail, the price vector p is fixed a priori, and

this also fixes the corresponding vector of demand rates λ = λ(p). In the context of

this problem and without any loss of generality we will assume that the products are

labelled in such a way that p1 ≥ p2 ≥ · · · ≥ pn. The firm has discretion as to which

product requests to accept at any given time. This is modelled through the control

ui(t) for each product i, which is equal to the probability of accepting such a request

at time t. It is customary to assume that the firm is ‘opening’ or ‘closing’ products

(or fare classes), thus leading to controls ui(·) that take the values of 0 or 1, but this

need not be imposed as a restriction. A more general class of controls could allow the
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firm to flip a coin upon arrival of a product i request with probability of success given

by ui(t) and make the accept/rejection decision accordingly. The dynamic capacity

control problem can be formulated as follows:

max
{u(t),t=1,... ,T}


E

 T∑
t=1

p′ξ(t;uλ)


 :

T∑
t=1

e′ξ(t;uλ) ≤ Ca.s. 1 and ui(t) ∈ [0,1]∀t

 ,

(4.2)

where uλ above denoted the vector with coordinates uiλi.

4.3 Analysis of the pricing and capacity control problems

This section describes how to reduce (4.1) and (4.2) into dynamic optimization prob-

lems where the control is the (one-dimensional) aggregate capacity consumption rate.

Subsequently, we derive some structural properties for these two problems through a

unified analysis.

4.3.1 Dynamic programming formulation of the pricing problem

Consider the dynamic pricing problem posed in (4.1). Let x denote the number of

remaining units of capacity at the beginning of period t, and V(x, t) be the expected

revenue-to-go starting at time t with x units of capacity left. Then, the Bellman equation

associated with (4.1) is:

V(x, t) = max
λ∈L



n∑
i=1

λi
[
pi(λ)+ V(x − 1, t + 1)

]+ (1− e′λ) V(x, t + 1)


 , (4.3)
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with the boundary conditions

V(x, T + 1) = 0 ∀ x and V(0, t) = 0 ∀ t. (4.4)

Letting ∆V(x, t) = V(x, t + 1) − V(x − 1, t + 1) denote the marginal value of one unit

of capacity as a function of the state (x, t), (4.3) can be rewritten as

V(x, t) = max
λ∈L


R(λ)−

n∑
i=1

λi∆V(x, t)


+ V(x, t + 1). (4.5)

The gist of the proposed solution approach is to rewrite (4.5) in terms of the one-

dimensional aggregate rate of capacity consumption defined by ρ := ∑ni=1 λi. We first

consider the maximum achievable revenue rate subject to the constraint that all prod-

ucts jointly consume capacity at a rate ρ, which is given by the solution to the following

parametric optimization problem

Rr(ρ) := max
λ

{
R(λ) :

∑n
i=1λi = ρ, λ ∈ L

}
. (4.6)

Note that (4.6) is concave maximization problem over a convex set, and its solution is

readily computable, often in closed form (examples are given in Section 4.5). Moreover,

Rr(·) is a concave function and satisfies the conditions of Assumption 1, and Rr(ρ)/ρ

is the optimal ‘average’ price per unit of capacity, which is interpreted as an inverse

demand function for this aggregate model. The unique vector of demand rates that

achieves that optimum will be denoted by λr (ρ). Let R := {ρ :
∑n
i=1 λi = ρ, λ ∈ L} be

the set of achievable capacity consumption rates. Then:
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Proposition 4.1 The dynamic pricing problem (4.1) can be reduced to the dynamic pro-

gram

V(x, t) = max
ρ∈R

{
Rr(ρ)− ρ∆V(x, t)}+ V(x, t + 1), (4.7)

and the boundary condition (4.4) expressed in terms of the one-dimensional aggregate

consumption rate. In particular, if ρ∗(x, t) denotes the optimal solution of (4.7) and (4.4)

and λ∗(x, t) and p∗(x, t) denote the optimal demand rate and price vectors associated

with (4.1), then,

λ∗(x, t) = λr (ρ∗(x, t)) and p∗(x, t) = p(λr (ρ∗(x, t))). (4.8)

Next, we show how the capacity control formulation can also be reduced to a prob-

lem that resembles (4.7), and then proceed to analyze the structure of both problems

in an unified manner.

4.3.2 DP formulation of the capacity control problem

Using the notation established above, the Bellman equation associated with (4.2) is

V(x, t) = max
ui∈[0,1]



n∑
i=1

λiui[pi + V(x − 1, t + 1)]+ (1−u′λ) V(x, t + 1)


 (4.9)
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with the boundary condition (4.4), which using the marginal value of capacity ∆V be-

comes

V(x, t) = max
ui∈[0,1]



n∑
i=1

λiuipi −u′λ∆V(x, t)

+ V(x, t + 1). (4.10)

Suppose products are labelled such that p1 ≥ p2 ≥ · · · ≥ pn. Observe that ρ = u′λ

and define

Ra(ρ) = max
u



n∑
i=1

uiλipi : u′λ = ρ, ui ∈ [0,1]



to be the maximum instantaneous revenue rate when the aggregate capacity consump-

tion rate (or probability of a sale at that time) is given by ρ. Let ua(ρ) be the control

that attains that maximum. Using the structure of the knapsack problem that defines

Ra(·) we get that

Ra(ρ) = min
i
ci + piρ and uak(ρ) = min

(
(ρ −∑i<k λi)+

λk
,1
)
, (4.11)

where c1 = 0 and ci =
∑
k<i λk(pk − pi), and for any x ∈ R, x+ := max(x,0). That is,

the optimal solution starts from offering product 1 (with the highest price) and keeps

adding more products until the total probability of a sale in period t becomes equal

to ρ. In practice, of course, one would always set ua1(ρ) = 1 for all ρ ≥ 0, i.e., it is

never optimal to close the highest-fare class. The ‘average’ expected selling price is

Ra(ρ)/ρ = mini ci/ρ + pi, which is, of course, decreasing in ρ, and Ra(·) is concave.

Combining these results, (4.2) can be expressed as a dynamic problem in terms of ρ as
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follows:

V(x, t) = max
0≤ρ≤∑ni=1 λi

{
Ra(ρ)− ρ∆V(x, t)}+ V(x, t + 1). (4.12)

subject to the boundary condition (4.4). This structural result is summarized below.

Proposition 4.2 The capacity control problem (4.2) can be reduced to the dynamic pro-

gram (4.12) and (4.4) expressed in terms of the one-dimensional aggregate consumption

rate ρ. In particular, if ρ∗(x, t) denotes the optimal solution of (4.12) and (4.4) and

u∗(x, t) denote the optimal policy for (4.2), then u∗(x, t) = ua(ρ∗(x, t)).

This last result was also derived in Talluri and van Ryzin (2004), while consider-

ing the capacity control problem for a model with customer choice. While their model

and emphasis was different than ours, one of their key findings was also that the opti-

mal policy in multi-product settings can be expressed in terms of the aggregate proba-

bility of a sale and the associated expected revenue, i.e., ρ and Ra(ρ).

4.3.3 A unified analysis of the pricing and capacity control problems

The similarity of the dynamic programs for the pricing and capacity control problems

highlights their common structure and allows them to be treated in a unified manner.

For both (4.7) and (4.12) the optimal control ρ∗(x, t) is computed from

ρ∗(x, t) = argmax
ρ∈R

{R(ρ)− ρ∆V(x, t)},
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where R(·) is any concave increasing revenue function. Using the properties of R(·)

one gets that ρ∗(x, t) is decreasing in ∆V(x, t), which using a backwards induction

argument in t gives that ∆V(x, t) is decreasing in x and t. These standard results for

single-product dynamic pricing problems are summarized below; a proof can be found

in Talluri and van Ryzin (2004, Prop. 5.2 Ch. 4).

Proposition 4.3 Talluri and van Ryzin (2004, Prop. 5.2 Ch. 4) For both problems

defined in (4.1) and (4.2) we have that:

1. ρ∗(x, t) is decreasing in the marginal value of capacity ∆V(x, t), and

2. ∆V(x, t) is decreasing in x and t.

Next, we specialize these results to the dynamic pricing and capacity allocation

problems. We first consider the dynamic pricing problem and for illustrative purposes

focus on the case where the products are non-substitutes. That is, the demand for

product i is only a function of the price for that product pi. In that case, the Lagrangian

associated with (4.6) is given by L(λ,x,y) = R(λ) + x(ρ − ∑ni=1 λi) − y′λ, and the

associated first order conditions are given by ∂R(λ)/∂λi = x + yi, for some x ≥ 0 and

yi ≤ 0 with yi = 0 if λi > 0. It is easy to show that x is decreasing in ρ (i.e., the

shadow price for the capacity consumption constraint decreases as the associated rate

ρ increases), and that λri (ρ) is decreasing in x. This is summarized below.

Corollary 4.1 Consider the problem specified in (4.3) and (4.4) and further assume that

the products are non-substitutes, i.e., λi(p) = λi(pi) for all i. λ∗i (x, t) is non-decreasing

in ρ∗(x, t) (and non-increasing in ∆V(x, t)).
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A similar result can be obtained when products are substitutable provided that the

demand model satisfies certain conditions analogous to the ones given for the price

sensitivity matrix B in §4.2.1 when describing the linear demand model example.

Finally, we specialize these results to the capacity control problem to recover some

well known structural properties of the optimal policy, see, e.g., Lee and Hersh (1993).

Our derivation based on the aggregate control offers some new intuition as to why

they hold. To start with, the optimal control ρ∗(x, t) is the solution to the following

optimization problem

max
0≤ρ≤∑ni=1 λi

min
i
ci + (pi −∆V(x, t))ρ.

Let i∗(x, t) = max{i ≥ 1 : pi ≥ ∆V(x, t)}. Then, by inspecting the form of the piecewise

linear objective function involved in the calculation of ρ∗(x, t) we get that

ρ∗(x, t) =
n∑

i≤i∗(x,t)
λi.

That is, the solution is ‘bang-bang’ in the sense that the form of the optimal control is

such that u∗i (x, t) is 0 if i > i∗(x, t) and 1 if i ≤ i∗(x, t). In addition, from Proposition

4.3 part 1 we see that i∗(x, t) is decreasing in the marginal value of capacity ∆V(x, t).

Therefore:

Corollary 4.2 For the capacity control problem (4.2) or equivalently, (4.12) and (4.4), the

optimal allocation policy is nested in that u∗i (x, t) = 1 if i ≤ i∗(x, t), and u∗i (x, t) = 0

otherwise, and i∗(x, t) is decreasing in the marginal value of capacity ∆V(x, t).
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4.3.4 An efficient frontier for multi-product pricing and capacity controls

The subproblem of computing the optimal revenue subject to a constraint on the aggre-

gate capacity consumption rate specified in (4.6) and (4.11) defines an efficient frontier

(ρ,Rr (ρ)) and (ρ,Ra(ρ)) for the dynamic pricing and capacity allocation problems,

respectively. As in the context of portfolio optimization, the efficient frontier provides

a systematic framework for comparing different policies and highlights the structure

of the optimal controls for these two problems. It may also lead to computational im-

provements if this subproblem can be solved efficiently, preferably in closed form. This

can be achieved for some commonly used demand models such as the linear and the

multinomial logit; both are reviewed in section 4.5.

As mentioned in the introduction the idea of an efficient frontier has also appeared

in Feng and Xiao (2000, 2004) and Talluri and van Ryzin (2004). The structure

of the dynamic programs studied in this section has been observed in other revenue

management papers, such as Lin et. al. (2003) and their study of single-resource

capacity control problems where each arrival may request multiple units of capacity,

and Vulcano et. al. (2002) and their analysis of optimal dynamic auctions. The

second of these papers studies a discrete time model where demand arrives in batches,

and in each period the firm runs an auction among the potential buyers of that period.

Given an announced auction mechanism, the firm observes the bids and selects how

many units to award by balancing total consumption with the extracted revenues in that

period. This is the discrete-time, batch demand analog to choosing ρ and computing

Rr(ρ), and in that sense the dynamic programming structure in Vulcano et. al. (2002)
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is closely related to the one observed here.

4.4 Deterministic analysis of the multi-product pricing problem

This section studies deterministic (fluid model) formulations of multi-product revenue

management problems to provide some structural results (Section 4.4.1) and suggest

simple and implementable heuristics for the underlying problems (Section 4.4.2). The

latter have desirable theoretical performance guarantees and are shown to perform well

in the numerical experiments of the next section. Finally, section 4.4.3 sketches how to

extend these ideas to the network setting.

4.4.1 Solution to the deterministic multi-product pricing problem

The dynamic program of section 4.3.1 is generally not solvable in closed form, and one

has to refer to numerical techniques for the computation of the optimal pricing deci-

sions, which is often difficult and results in policies that are hard to implement. This

motivates the use of approximate models that are analytically tractable and may lead

to practical solutions. The most natural candidate is the ‘fluid’ model that has deter-

ministic and continuous dynamics, and is obtained by replacing the discrete stochastic

demand process by its rate, which now evolves as continuous process. It is rigorously

justified as a limit under a strong-law-large-numbers type of scaling when we let the

potential demand and the capacity grow proportionally large; see Gallego and van

Ryzin (1994, 1997), and Section 4.4.2.

It is simplest to describe the fluid model in continuous time (this is consistent
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with Gallego and van Ryzin (1994, 1997)). In more detail, the realized instanta-

neous demand for product i at time t in the fluid model is deterministic and given

by λi(t). and allow product i requests to consume capacity at a rate of ai > 0 units

per unit of demand, and denote by a the vector [a1, . . . , an]. This is a generaliza-

tion of the model considered thus far that assumed uniform capacity requirements

that with no loss of generality can be taken to be 1, which however can be addressed

with no increase in complexity. With a general capacity requirement vector a the

capacity consumption rate is defined by ρ = a′λ, and the definitions of Rr and λr

can be appropriately adjusted to reflect that change. The system dynamics are given

by dx(t)/dt = −∑ni=1 aiλi(t), x(0) = C , together with the boundary condition that

x(T) ≥ 0. i.e., this model has deterministic and continuous dynamics. The firm selects

a demand rate λi(t) (or a price) at each time t. The fluid control formulation of our

revenue management problem is the following:

max
{λ(t),t∈[0,T ]}

{∫ T
0
R(λ(t))dt :

∫ T
0
a′λ(t)dt ≤ C and λ(t) ∈ L ∀t

}
. (4.13)

Single-product problem: For the case with one product Gallego and van Ryzin

(1994) showed that a fixed price (and thus a constant demand rate) is optimal for (4.13).

This is described as follows. Let λ̂ = argmax{R(λ) : λ ∈ L} and p̂ = p(λ̂) be the

demand rate and price that maximize the instantaneous revenue rate in the absence

of any capacity considerations, respectively. Also, define λ0 = C/T be the run-out rate

that depletes capacity at time T , and let p0 = p(λ0) be the associated price. Then,
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Gallego and van Ryzin (1994) showed that

λ̄ = min(λ̂, λ0) and p̄ = max(p̂, p0)

are the optimal demand rate and price for the fluid formulation of the pricing problem

given in (4.13). (To differentiate from the solution of the dynamic programming for-

mulation of the previous section we have used an overbar to denote the fluid solution.)

That is, the optimal demand and price are constant and do not depend on the state

of the system at any given time t. Intuitively, the solution uses the revenue maximiz-

ing price p̂ unless this will deplete the capacity too soon, in which case the firm can

increase its unit price to p0 and sell its capacity by time T , while accruing higher to-

tal revenues. Gallego and van Ryzin (1997, §4.5) extended these results to multiple

products, but in that case without providing such a succinct solution.

Multi-product problem: Following the approach of section 4.3 we can reduce the

multi-product problem to an appropriate single-product one, and thus solve it in closed

form. Specifically, recalling the definitions of the aggregate revenue function Rr(ρ) and

optimal demand rate vector λr (ρ) in (4.6) adjusted for the fact that ρ = a′λ, (4.13) can

be rewritten as:

max
{ρ(t),t∈[0,T ]}

{∫ T
0
Rr(ρ(t))dt :

∫ T
0
ρ(t)dt ≤ C, ρ(t) ∈ R ∀t

}
. (4.14)

Note that (4.14) is the same as (4.13) for a single product with the revenue function

Rr , and hence, it is solvable using the approach described above. Let ρ0 := C/T and
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ρ̂ = argmaxρ Rr (ρ). Then, the optimal solution to (4.14) is to consume capacity at a

constant rate ρ̄ given by

ρ̄ := min(ρ̂, ρ0). (4.15)

The corresponding vector of demand rates that maximizes the instantaneous revenues

subject to the constraint that capacity is consumed at a rate ρ̄ is given by λr (ρ̄), and

the corresponding prices are p(λr (ρ̄)). A direct verification that this solution satisfies

the optimality conditions for (4.13) establishes the following result.

Proposition 4.4 Let λ̄(·) and p̄(·) denote the optimal vectors of demand rates and prices

for (4.13). Then, λ̄, p̄ are constant over time and are given by

λ̄(t) = λr (ρ̄) and p̄(t) = p(λr (ρ̄)). (4.16)

4.4.2 Heuristic policies extracted from the deterministic analysis

Based on the preceding analysis we propose three heuristics for the underlying revenue

management problems, which we analyze in the asymptotic setting introduced in Gal-

lego and van Ryzin (1997) and Cooper (2002). Among other things we will show that

the dynamic heuristic that ‘resolves’ the fluid policy as t progresses is asymptotically

optimal in an appropriate sense.

I. Pricing heuristics

a. A static pricing heuristic: The first and simplest of our heuristics implements

a static pricing policy p̄ specified in Proposition 4.4. This policy corresponds to the
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make-to-order heuristic of Gallego and van Ryzin (1997).

The static nature of policy (a) is desirable for implementation purposes (see Gal-

lego and van Ryzin (1997)), but also removes any form of capacity control. This

issue does not arise in the fluid formulation, because capacity is then drained along

an optimal deterministic trajectory, but it may be relevant in the underlying stochas-

tic problem when capacity is close to being depleted. The next heuristics provide two

possible adjustments to this static policy that add such capacity control capability and

seem of practical interest. We start by recognizing that the solution of the fluid pricing

problem of Section 4.4.1 can also be described in feedback form as

ρ̄(x, t) = min
(
ρ̂,

x
T − t

)
, (4.17)

where x is the remaining capacity at time t. The deterministic trajectory of the fluid

model is, of course, such that x/(T − t) = C/T for all t if ρ̂ ≥ C/T , and x/(T − t) =

(C − ρ̂t)/(T − t) ≥ C/T if ρ̂ < C/T . In both cases, ρ̄(x, t) = min(ρ̂, C/T) for all x, t

along the fluid trajectory of the capacity process, and thus (4.17) is identical to the

static control derived in (4.15).

b. A List Price Capacity Control (LPCC) heuristic: One way to implement (4.17) is by

coupling capacity control decisions together with the static pricing policy given in (a).

Specifically, our second heuristic is defined as follows:

1. price according to p̄ and label products such that p̄1/a1 ≥ p̄2/a2 ≥ · · · ≥ p̄n/an,

and

2. compute ρ̄(x, t) and use the capacity controls u1(x, t) = 1 if x > 0, u1(0, t) = 0,
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and

ui(x, t) =




1 if ρ̄(x, t)−∑j<i ajλ̄j ≥ aiλ̄i
0 otherwise

for k ≥ 2. (4.18)

Note that with prices fixed, this control can only reduce the aggregate capacity con-

sumption rate over its nominal value of
∑n
i=1 aiλ̄i, but can never increase it. This

heuristic makes a product available only if the fluid solution starting from that state

would choose to sell this product in all future time periods, and ‘closes’ the product

if the fluid solution would dictate only partial acceptance of the associated demand.

When implementing in a discrete-time setting, rounding errors can be avoided by set-

ting uk(x, t) = 1 if ρ̄(x, t)−∑i<k aiλ̄i ≥ (T − t + 1)(akλ̄k).

This policy is a refinement of the static pricing policy in (a) and the make-to-order

heuristic of Gallego and van Ryzin (1997). Other examples of joint pricing and ca-

pacity controls can be found in the recent papers by Vulcano et. al. (2002), by Lin

et. al. (2003) and Feng and Xiao (2004).

c. A dynamic pricing heuristic: The third policy translates the aggregate control

ρ̄(x, t) into product-level rates (and prices) through

λ(x, t) = λr (ρ̄(x, t)) and p(x, t) = p(λ(x, t)), (4.19)

where the mapping λr (·) was the maximizer in (4.6). This corresponds to the idea

of ‘resolving’ the fluid problem as we step through time, which is widely applied in

practice, where, however, the resolving occurs at discrete points in time, e.g., daily or
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weekly depending on the application setting. Despite its practical appeal and use, to

the best of our knowledge policies that use this resolving idea have not been analyzed

theoretically, other than the isolated example provided by Cooper (2002) that illus-

trated that resolving may in fact degrade the performance of the fluid heuristic in a

stochastic problem of multi-product capacity control problem. Our preceding discus-

sion illustrates that ‘resolving’ is nothing but implementing the fluid policy in feedback

form. The analysis that follows will characterize its behavior in an appropriate asymp-

totic sense, and the numerical results of the next section will demonstrate that it tends

to outperform the other two candidate policies.

II. Asymptotic performance analysis of the pricing heuristics

The remainder of this subsection offers a brief asymptotic characterization of the

performance under these three heuristics that shows that all three are (fluid-scale)

asymptotically optimal in a regime where the potential demand and capacity grow pro-

portionally large; this is consistent with the setup and the criterion of Gallego and

van Ryzin (1997) and Cooper (2002). Specifically, using k as an index, we will con-

sider a sequence of problems with demand model λk(·) = kλ(·) and capacity Ck = kC ,

and we will let k increase to infinity; a superscript k will denote quantities that scale

with k. Let Ni for i = 1, . . . , n denote independent unit rate Poisson processes, and

recall the functional strong-law-of-large numbers for the Poisson process that asserts

that as k→∞ and for all t ≥ 0,

Ni(kt)
k

→ t a.s. (4.20)
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For all of the candidate policies the capacity dynamics can be expressed as follows.

Let

Aki (t) =
∫ t

0
kλi(s)ds (4.21)

where λi(t) is the demand rate for product i at time t. Then, the cumulative demand

for that product up to time t is equal to Ni(Aki (t)) and the remaining capacity at time

t is

Xk(t) = Ck −
n∑
i=1

aiNi(Aki (t)). (4.22)

Our goal here is to analyze the ‘fluid-scale’ behavior of the capacity process defined as

X̄k(t) := Xk(t)/k under the three candidate policies. The analysis of the static policy

(a) is related to that of Gallego and van Ryzin (1997), while those of the dynamic

policies are new.

Analysis of the static heuristic (a): In this case, the firm uses the constant price

vector p̄, which results in the demand rates λk(p̄) = kλ̄. We could either assume that

the demand rates become 0 when the capacity is depleted, or keep them unchanged but

modify (4.22) to Xka(t) = (Ck −
∑n
i=1 aiNi(A

k
i (t)))

+. (The subscript is used to identify

the policy.) For simplicity we will proceed with the latter. For this policy we have that

Aki (t) = λ̄ikt, and thus as k→∞

Ni(Aki (t))
k

→ λ̄it a.s., uniformly in t ∈ [0, T ]. (4.23)
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It immediately follows that as k→∞ and for all t ∈ [0, T ]

X̄ka(t)→

C − n∑

i=1

aiλ̄it



+
= C − ρ̄t a.s.;

the (·)+ was removed since from (4.15) ρ̄t ≤ C for all t ∈ [0, T ]. Let Rka denote the

revenues extracted under policy (a), and τk := inf{s ≥ 0 :
∑n
i=1 aiNi(λ̄iks) ≥ Ck} be the

random time where the aggregate capacity requested reaches or exceeds the available

capacity Ck. Then,

Rka :=
n∑
i=1

p̄iNi(kλ̄imin(T , τk))− δ, (4.24)

where δ is a random variable that corrects revenues for the case where τk < T , which is

bounded above by maxi p̄i. (We will not delve into an accurate description of δ, since it

will turn out to be asymptotically negligible.) From (4.23) and arguing by contradiction

shows that (T − τk)+ → 0 a.s., as k → ∞. Combining with (4.24) we get the following

result.

Proposition 4.5 Suppose that demand and capacity are scaled according to λk(·) =

kλ(·) and Ck = kC , and consider the static pricing policy pk(x, t) = p̄ for all x, t and

all k. Then, as k→∞, X̄ka(t)→ C − ρ̄t a.s., uniformly in t, and 1
kR

k
a →

∑n
i=1 p̄iλ̄iT a.s.

That is, the static pricing policy (a) is asymptotically optimal in that it achieves as

k → ∞ the revenue extracted in the fluid model; this is the criterion used in Gallego

and van Ryzin (1997) and Cooper (2002). This is also referred to as fluid-scale asymp-

totic optimality (see Maglaras (2000)) to highlight that it pertains to optimality with
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respect to the highest order revenue term. We will next analyze the dynamic pricing

policy (c), and then return to deal with (b).

Analysis of the dynamic heuristic (c): The dynamic nature of this policy requires a

more detailed study. The cumulative demand for product i up to time t is equal to

Ni(Aki (t)), where

Aki (t) =
∫ t

0
kλi(s)ds where λi(s) = λri

(
min(ρ̂, Xkc (s)/(k(T − s)))

)
, (4.25)

for λri (·) defined in (4.6), and Xkc (t) denotes the remaining capacity at time t under

policy (c), defined in (4.22). Now, X̄kc (t) is bounded (X̄k(t) ∈ [0, C]) and therefore

the sequence {X̄kc (t) : t ∈ [0, T ]} is tight (see Glynn (1990, §3)), and therefore has a

converging subsequence, say {kj}, such that along this subsequence, X̄
kj
c (t) → x̄c(t)

a.s., uniformly in t; at this point limit trajectory may depend on the converging subse-

quence, but as we will see momentarily all possible limit solutions coincide. Given the

continuity of λri (·) and using Lemma 2.4 of Dai and Williams (1994b) we get that as

k→∞

1
k
Aki (t) =

∫ t
0
λri

(
min

(
ρ̂,
X̄kc (s)
T − s

))
ds →

∫ t
0
λri

(
min

(
ρ̂,
x̄c(s)
T − s

))
ds (4.26)

a.s., uniformly in t. Using (4.20), (4.22) and (4.26) we get that as k→∞

X̄kc (t) = C −
1
k

n∑
i=1

aiNi(Aki (t)) → C −
∫ t

0
min

(
ρ̂,
x̄c(s)
T − s

)
ds (4.27)

= C − ρ̄t,
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where the last equality follows from identifying that this is the unique solution to (4.27),

and the convergence is almost sure, uniformly in t. Finally, the revenues extracted

under policy (c) are

Rkc =
n∑
i=1

∫ t
0
pki (t)dNi(A

k
i (t)),

where pk(t) is the price vector that corresponds to λr (min(ρ̂, X̄kc (t)/(T − t))), the

demand rate vector at time t, and the integrals should be interpreted in the Riemann-

Stieltjes sense. From (4.26) and (4.27) we have that λri (min(ρ̂, X̄kc (t)/(T − t)))→ λ̄i a.s.,

uniformly in t. By the continuity of the inverse demand function we have that pk(t)→ p̄

a.s., uniformly in t, and therefore using again Lemma 2.4 of Dai and Williams (1994b)

we get the result summarized below.

Proposition 4.6 Suppose that demand and capacity are scaled according to λk(·) =

kλ(·) and Ck = kC , and consider the dynamic pricing heuristic defined through (4.25).

Then, X̄kc (t)→ C − ρ̄(t) a.s., uniformly in [0, T ], 1
kR

k
c →

∑n
i=1 p̄iλ̄iT a.s.

Analysis of the LPCC heuristic (b): This policy is defined through Aki (t) = kλ̄i ·
∫ t
0 u

k
i (t)dt, where uki (t) was defined in (4.18) and can be expressed as follows:

uk1(t) = 1{X̄kb(t) > 0} and

uki (t) = 1

{
min(ρ̂

X̄kb(t)
T − t )−

∑
j<iajλ̄j ≥ aiλ̄i

}
for i ≥ 2, (4.28)

where 1{·} is the indicator function. Similarly to the analysis of policy (c), the family

{X̄kb(t), t ∈ [0, T ]} is tight, and thus it has a converging subsequence {kj} on which
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X̄
kj
b (t) → x̄b(t) a.s., uniformly in t. Writing down x̄b(t) and evaluating ui(t), reveals

that in the limit model ui(t) = 1 for all products i. Arguments similar arguments to

the ones used above gives the following result.

Proposition 4.7 Suppose that demand and capacity are scaled according to λk(·) =

kλ(·) and Ck = kC , and consider the LPCC heuristic defined through (4.28). Then,

X̄kb(t)→ C − ρ̄(t) a.s., uniformly in [0, T ], 1
kR

k
b →

∑n
i=1 p̄iλ̄iT a.s.

That is, resolving and using either the dynamic pricing or the LPCC heuristics is

asymptotically optimal in the fluid sense, as was the static policy (a). We note that

the last proposition is related in spirit to the one proved in Lin et.al. (2003) for their

proposed policy. Propositions 4.6 and 4.7 established that the suboptimal behavior

of the resolving idea demonstrated by the example of Cooper (2002) does not persist

when one considers its performance in systems with large capacity and large demand.

The same asymptotic performance would be obtained in a setting where the resolving

occurs in discrete points in time, provided that this is done sufficiently frequently. If

lk is the time between resolving epochs, then the type of analysis used in studying the

asymptotic behavior of discrete-review policies (see Harrison (1995b) and Maglaras

(2000)) can be applied to establish that it suffices that lk ↓ 0. That is, the number of

demand requests between resolving periods must be small compared to the capacity. A

more refined analysis that involves a central-limit-theorem type of correction to Rka, R
k
b

and Rkc that is proportional to
√
k would in fact show that policy (c) is better than (b),

which is better than (a). These findings are illustrated numerically in the next section.

Finally, we note that the feedback nature of the dynamic policies will make them more
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robust against model and/or parameter uncertainties, e.g., with respect to the func-

tional form of the demand model or the size of the cross-price sensitivity parameters.

While this issue is of significant practical and theoretical interest, its analysis is beyond

the scope of this paper.

4.4.3 Dynamic Pricing Network Revenue Management Problems

Suppose that the firm is operating a network of resources, indexed by j = 1, . . . ,m,

and that each product i request consumes Aij units of resource j capacity. Let A :=

[Aij] denote the associated capacity consumption matrix, and assume that the initial

capacity for each resource j is Cj . Then, the fluid model formulation of the network

dynamic pricing problem is:

max
{λ(t), t∈[0,T ]}

{∫ T
0
R(λ(t))dt :

∫ T
0
Aλ(t)dt ≤ C and λ(t) ∈ L ∀t

}
. (4.29)

As before, this problem can be expressed in terms of ρ which is defined by ρ := Aλ.

Specifically, let

Rr(ρ) := max
λ

{R(λ) : Aλ = ρ, λ ∈ L} , (4.30)

be the maximum achievable revenue rate when resource capacity is consumed at a rate

ρ, and λr (ρ) denote the corresponding vector of optimal demand rates. Then, (4.29)
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can be reduced to

max
{ρ(t), t∈[0,T ]}

{∫ T
0
Rr(ρ(t))dt :

∫ T
0
ρ(t)dt ≤ C and ρ(t) ∈ R ∀t

}
. (4.31)

Let ρ̄ denote the solution to (4.31). Then, λr (ρ̄) will be the vector of optimal demand

rates for (4.29). This reduction can be computationally beneficial, since as is often

the case the number of products (e.g., the number of fare-class and origin-destination

pairs) tends to be greater than the number of resources (e.g., number of flights in a

hub-and-spoke network). One can similarly address network capacity control problems

using the results of the previous subsection. Overall, this structural decomposition

seems a promising direction for future work towards the development of practical net-

work revenue management algorithms. We refer the reader to Gallego and van Ryzin

(1997) and Kleywegt (2001) for fluid formulations to multi-product network revenue

management problems.

4.5 Numerical examples

This section reports on a set of numerical examples that contrast the performance of

the heuristics proposed in the previous section to that of the optimal policy obtained

from the dynamic program. We review a variety of settings that explore the effects of

the joint capacity constraint and of cross-price sensitivities in multi-product revenue

management.

The base model that we use has two products, each consuming one unit of capac-

ity per request, and a linear demand relationship of the form λ(p) = Λ − Bp with
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Λ = [.3, .1] and T = 200 time periods. Towards the end of the section we will study

examples with three products and non-uniform capacity requirements. The price set is

defined as P = {p : Λ−Bp ≥ 0}. Recall that the inverse demand and revenue functions

are given by p(λ) = B−1(Λ − λ) and R(λ) = λ′B−1(Λ − λ), respectively. The specific

policies that we consider are the following:

• ‘Revmax’ corresponds to the monopoly price vector p̄ that maximizes the aggre-

gate instantaneous revenue rate disregarding the capacity constraints, computed

as follows:

λ̂ = argmax {λ′B−1(Λ− λ) : λ ≥ 0} = (1/2)(B−1 + B−1′)−1Λ and

p̂ = B−1(Λ− λ̂).

• ‘Fluid’ implemented the price vector p̄ = p(λr (ρ̄)) as defined in (4.15) and (4.16).

For the linear demand model one can derive closed form expressions for the aggre-

gate revenue function Rr(ρ), the corresponding revenue maximizing demand vector

λr (ρ), and get a simple characterization of policies (a) and (b). We will illustrate this

point for the special case where B is diagonal, i.e., bij = 0 for all i ≠ j, in which case

there are no cross-price sensitivity effects due to product substitution and/or comple-

mentarities. In this case, B = diag(b11, . . . , bII) and B−1 = diag(1/b11, . . . ,1/bII). The

revenue function is R(λ) = ∑ni=1 λi(Λi − λi)/bii and ∂R(λ)/∂λi = (Λi − 2λi)/bii. With

no loss of generality we will assume that products are labelled such that Λ1/b11 ≥
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Λ2/b22 ≥ · · · ≥ ΛI/bII . The ‘Revmax’ policy is given by

λ̂i = Λi/2 and p̂i = Λi/2bii.

The ‘Fluid’ policy is defined as follows. For a sequence of constants 0 = ρ(0) ≤ ρ(1) ≤

· · · ≤ ρ(I) (specified below) we set î(ρ) as a function of ρ to be î(ρ) = min{i ≥

0 : ρ(i) ≥ ρ}, and then

λrj (ρ) =



λ̂j − µBjj j ≤ î(ρ)

0 j > î(ρ)
where µ =

∑
k≤î λ̂k − ρ∑
k≤î Bkk

,

and Rr(ρ) = λr (ρ)′B−1(Λ − λr (ρ)) which is a piecewise concave quadratic function

in ρ. The expression for µ comes from the form of the Lagrange multiplier that takes

into account the ‘open’ products. It remains to define the constants ρ(i), which is done

recursively as follows:

ρ(1) = min
{
ρ ≥ 0 : ρ = l1, Λ1 − 2l1

b11
= Λ2

b22

}
,

ρ(2) = min
{
ρ ≥ 0 : ρ = l1 + l2, Λ1 − 2l1

b11
= Λ2 − 2l2

b22
= Λ3

b33

}

and so on. A similar argument can be applied when the cross-price sensitivity parame-

ters are non-zero and the capacity requirements are not all equal to 1.

• ‘Decoupled-DP’ is the following heuristic: each product manager calculated up-

front a dynamic pricing strategy for his product by solving a single-item DP, dis-

regarding cross-elasticity effects with the other product. At each point t in time,
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the remaining capacity is split according to the nominal split prescribed by the

fluid solution, C̃i(t) := λr (ρ̄) · (T − t). The product managers then implement the

pricing strategy according to the remaining time and their assigned inventory.

This heuristic is one of many possible ‘refinements’ over the deterministic fluid

solution, and is used for illustrative purposes.

• ‘LPCC’ is the joint (list) pricing and capacity control heuristic defined through

(4.18).

• ‘DynPrice’ is the dynamic implementation of the fluid policy defined through

(4.19).

• ‘DP’ implemented the solution of the dynamic program outlined in Section 3.1.

The expected revenue under the first two static pricing rules were computed analyti-

cally using a binomial model, while those under the next three policies were obtained

by averaging out revenues from 1,000 simulated sample paths.

I. The effect of the joint capacity constraint. Table 1 studies a series of problems with

increasing capacity. The price sensitivity matrix is B = diag(1,6), which implies that

there are no cross-price sensitivity effects (b12 = b21 = 0) to isolate the effect of the

joint capacity constraint on the performance of the various heuristics.1 The resulting

demand model was

λ1(p) = .3− 1p1 and λ2(p) = .1− 6p2.
1The parameter values in this and other examples that follow were selected from a large pool of

cases tested, and are representative in terms of the optimality gaps observed for the various policies.
To demonstrate the effects of the joint capacity constraint and cross-price sensitivities, the relative
magnitudes of Λ and B for the two products are such that in most cases it is economically optimal to
offer both products.



105

Table 4.1: Results for B = diag(1,6). For each policy we report the expected revenue

(×1000) and the optimality gap relative to the performance of the optimal policy (DP).

C Revmax Decoupled-DP Fluid LPCC DynPrice DP

15 171.87 (45.9%) 186.00 (41.4%) 304.25 (4.2%) 305.25 (3.9%) 305.40 (3.8%) 317.52

20 229.17 (39.3%) 236.64 (37.3%) 366.29 (3.0%) 367.34 (2.7%) 372.18 (1.5%) 377.67

25 286.41 (31.4%) 285.38 (31.7%) 404.96 (3.0%) 406.98 (2.6%) 416.05 (0.4%) 417.63

30 342.94 (22.2%) 324.83 (26.3%) 420.98 (4.4%) 426.04 (3.3%) 436.05 (1.0%) 440.53

35 394.66 (12.6%) 348.15 (22.9%) 428.65 (5.1%) 443.25 (1.9%) 445.76 (1.3%) 451.63

40 432.53 (5.4%) 367.89 (19.5%) 432.53 (5.4%) 454.76 (0.7%) 454.55 (0.7%) 457.00

45 451.40 (1.8%) 396.58 (13.7%) 451.40 (1.8%) 458.73 (0.2%) 458.63 (0.2%) 459.50

50 457.18 (0.7%) 414.24 (10.0%) 457.18 (0.7%) 459.16 (0.3%) 458.93 (0.3%) 460.39

The ‘Fluid’ pricing problem becomes unconstrained, i.e., the capacity constraint is

not binding at its optimum, for C ≥ 40 units, in which cases the ‘Revmax’ and ‘Fluid’

prices coincide. We observe the following. First, the relative performance under the

‘Fluid’ and ‘Revmax’ heuristics improves as the capacity C increases; this is consistent

with the results by Gallego and van Ryzin (1994, 1997) that also illustrated that the

effect of the capacity constraint is more pronounced when C is scarce. Second, for the

cases where the capacity is scarce, the ‘Fluid’ heuristic that incorporates the capacity

constraint significantly outperforms ‘Revmax,’ but its regret over the ‘DP’ policy can

still be substantial (0.7%-5.4%). Third, in comparing ‘Fluid’ with ‘LPCC’ we note that

when the capacity is small C ≤ 20 the fluid prices effectively switch off product 2 and

operates as a single-product system, where the two rules are almost identical. As the

capacity increases, it is optimal to offer both products and the effect of the capacity

control capability of LPCC becomes more evident. Switching from an effectively single-
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product to a two-product solution also causes the optimality gaps to be non-monotone.

Fourth, the dynamic pricing heuristic that effectively resolves the fluid policy at each

time point is significantly better than all these heuristics when the caapcity is scarce.

Finally, the ‘Decoupled-DP’ policy performs very poorly even when the firm has ample

capacity, mainly because it disregards the pooling effects across products.

II. The cross-price elasticity effects. The next two tables study how cross-price sensi-

tivity effects impact the performance of these heuristics by gradually increasing the in-

teraction terms b12 and b21. Table 2 used b12 = −.4 and b21 = −.6, which corresponds

to the demand model λ1(p) = .3−1p1+.4p2 and λ2(p) = .1−6p2+.6p1, while Table

3 had b12 = −0.8 and b21 = −1.2. Again, the ‘Decoupled-DP’ heuristic performs very

poorly when compared to all other candidates, and its performance deteriorates sub-

stantially as the magnitude of the cross-price interaction terms increases. The ‘Fluid’

and ‘LPCC’ policies that incorporate the interaction effects in their static prices perform

consistently well, but again the magnitude of their respective optimality gaps tends to

increase as the interaction coefficients increase. Based on a wide range of examples ran

with random interaction terms bij while keeping bii constant, we found that the ‘LPCC’

heuristic outperforms the ‘Fluid’ policy by about .75% to 2% in cases where the capacity

is sufficiently large so as to want to offer both products. The dynamic heuristic adds

an other 1% of improvement.
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Table 4.2: Expected revenues and optimality gaps when B = [1 − .4;−.6 6] .

C Revmax Decoupled-DP Fluid LPCC DynPrice DP

20 235.77 (42.0%) 121.35 (70.2%) 394.27 (3.1%) 396.13 (3.6%) 399.21 (1.9%) 406.81

30 353.42 (26.1%) 199.95 (58.2%) 457.89 (4.2%) 464.66 (2.8%) 472.74 (1.1%) 478.11

40 457.84 (8.4%) 262.36 (47.5%) 475.35 (4.9%) 492.57 (1.5%) 496.94 (0.6%) 500.07

50 500.63 (1.1%) 342.00 (32.4%) 500.63 (1.1%) 505.57 (0.1%) 506.05 (0.0%) 506.17

Table 4.3: Expected revenues and optimality gaps when B = [1 − .8;−1.2 6] .

C Revmax Decoupled-DP Fluid LPCC DynPrice DP

20 265.22 (44.8%) 75.03 (84.4%) 465.13 (3.2%) 465.19 (3.1%) 472.12 (1.7%) 480.29

30 397.77 (30.1%) 133.86 (76.5%) 545.46 (4.1%) 551.33 (3.1%) 562.73 (1.0%) 568.68

40 524.30 (12.6%) 204.75 (65.9%) 572.29 (4.6%) 589.80 (1.7%) 597.80 (0.4%) 599.90

50 597.98 (2.1%) 260.79 (57.3%) 597.98 (2.1%) 606.49 (0.7%) 606.70 (0.7%) 610.99

III. Mulitple products. Table 4 reports results for a model with three products, and

provides a brief illustration of the consistently good performance of the LPCC and

DynPrice policies.

Table 4.4: A three-product example: Λ = [.2 .1 .1] and

B = [1 − .8 − .4;−1.2 3 − .6;−.3 − .6 4] .

C Revmax Decoupled-DP Fluid LPCC DynPrice DP

10 132.08 (56.0%) 12.81 (95.7%) 237.65 (20.8%) 251.98 (16.1%) 284.04 (5.4%) 300.16

20 264.15 (42.3%) 38.13 (91.7%) 436.29 (4.7%) 444.12 (3.0%) 451.15 (1.4%) 457.63

30 395.99 (25.4%) 92.95 (82.5%) 507.77 (4.3%) 511.24 (3.6%) 525.38 (1.0%) 530.51

40 513.68 (8.4%) 157.74 (71.9%) 534.99 (4.6%) 543.67 (3.0%) 556.64 (0.7%) 560.65

50 563.05 (1.1%) 199.91 (64.9%) 561.52 (1.4%) 563.82 (1.0%) 566.42 (0.5%) 569.35

IV. Non-uniform capacity requirements The next two tables summarize results for a

model with two products that have different capacity requirements. This change com-
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plicates the associated dynamic programming formulation, in the sense that the struc-

tural result of Section 4.3.1 that allows us to consider the problem in terms of the

aggregate capacity consumption rate no longer holds. Numerically, this affects the

backwards induction step required to solve the problem. In contrast, the fluid analysis

of Section 4.4.1 and the heuristics extracted therein are still valid. In the notation of

Section 4.4, we will assume that product i consumes ai units of capacity and a1 ≠ a2.

The results of the next two tables suggest that the fluid model heuristics perform quite

well in cases where the capacity requirements are small compared to the capacity it-

self. This effect is more pronounced in Table 6 because in this example the product

that requires more capacity per request (product 1) happens to be the more profitable

product as well, hence making the overall capacity small compared to a1 in the first

two or three rows.

Table 4.5: Expected revenues and optimality gaps when

B = [1 − .4;−.6 6] and a = [1 2].

C Revmax Fluid LPCC DynPrice DP

10 92.61 (63.0%) 234.09 (6.6%) 235.65 (5.9%) 233.64 (6.7%) 250.54

20 181.29 (55.3%) 394.35 (2.8%) 394.92 (2.7%) 399.77 (1.5%) 405.75

30 273.21 (42.7%) 456.32 (4.3%) 459.51 (3.7%) 464.22 (2.7%) 476.91

40 361.53 (27.1%) 468.52 (5.6%) 485.66 (2.1%) 488.78 (1.5%) 496.05

50 442.54 (12.0%) 473.95 (5.7%) 494.47 (1.7%) 497.77 (1.0%) 502.77

60 491.22 (2.9%) 489.40 (3.2%) 500.14 (1.1%) 504.46 (0.3%) 505.81

70 502.87 (0.8%) 503.02 (0.7%) 504.94 (0.4%) 505.07 (0.3%) 506.73

80 505.12 (0.3%) 505.74 (0.2%) 506.10 (0.2%) 506.33 (0.1%) 506.86
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Table 4.6: Expected revenues and optimality gaps when

B = [1 − .4;−.6 6] and a = [2 1].

C Revmax Fluid LPCC DynPrice DP

10 66.90 (51.8%) 120.96 (12.9%) 121.81 (12.3%) 120.51 (13.3%) 138.92

20 136.64 (45.8%) 235.07 (6.7%) 235.57 (6.5%) 234.83 (6.8%) 252.04

30 206.30 (39.5%) 325.97 (4.4%) 327.28 (4.0%) 327.54 (3.9%) 340.95

40 276.01 (32.2%) 393.26 (3.3%) 394.49 (3.0%) 399.77 (1.7%) 406.89

50 345.91 (23.4%) 438.37 (3.0%) 438.61 (2.9%) 449.08 (0.6%) 451.85

60 411.77 (14.2%) 461.79 (3.7%) 463.35 (3.4%) 473.84 (1.2%) 479.64

70 465.83 (6.0%) 473.78 (4.4%) 477.88 (3.6%) 491.75 (0.8%) 495.78

80 494.94 (1.7%) 493.53 (2.0%) 495.15 (1.7%) 500.27 (0.7%) 503.60

90 503.42 (0.6%) 502.08 (0.8%) 505.33 (0.2%) 505.85 (0.1%) 506.26

V. An analytical example: the Multinomial Logit (MNL) model We complete this sec-

tion by illustrating that for the commonly used MNL choice model the subproblems

of computing the revenue function and demand rates as functions of the aggregate

demand rate are solvable in closed form. In the MNL model we assume that potential

customers arrive to the firm with utilities for each product i given by ui + ξi, where

ui is the deterministic portion that is common to all customers and ξi is the random

term (that differentiates customers). The MNL choice model hinges on the assumption

that these random terms ξi are random variables drawn from a Gumbel distribution

with mean zero and parameter one (the latter is assumed w.l.o.g.), which as IID across

products and customers. The deterministic component of the utility can be written as

ui = vi − pi, where vi denotes the ‘average value’ of the product and pi is its price.

Finally, we denote by u0 + ξ0 the utility of the no-purchase option, where ξ0 is IID with
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the ξi’s and w.l.o.g. we will assume that u0 = 0. Finally, let Λ be the aggregate customer

arrival rate or market size. Under these assumptions the demand rates for product i is

given by

λi(p) = Λ evi−pi
1+∑j evj−pj .

Suppose further that the cost of a unit of product i to the firm is given by ci > 0. Then,

the profit rate function as a function of the price vector is given by
∑n
i=1 λi(p)(pi −

ci). With some abuse of notation define the aggregate profit rate function Rr(ρ) to

incorporate the product costs ci as follows

Rr(ρ) := max



n∑
i=1

λi(p)(pi − ci) :
n∑
i=1

λi(p) = ρ, λ(p) ≥ 0


 .

Then, simple algebraic manipulations give that

Rr(ρ) = ρ ln(
∑
j
evj−cj )− ρ ln(ρ/(Λ− ρ)) (4.32)

and

λi(ρ) = ρ evi−ci∑
j evj−cj

and pi(ρ) = ci + ln(
∑
jevj )− ln(ρ/(Λ− ρ)). (4.33)

This calculation offers a nice insight about the structure of the optimal pricing strategy,

namely that each product is priced at its cost plus a common premium that depends

on the aggregate capacity consumption rate. From a computational viewpoint, one can
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now use the expression for Rr(ρ) in the dynamic program of the form discussed in

Subsection 4.3.1 to efficiently solve for the optimal capacity consumption rate ρ∗(x, t)

and then use (4.33) to translate this into product-level controls.



Chapter 5

Price Competition under Time-Varying

Demands and Dynamic Lot Sizing

Costs

5.1 Introduction

Determining the ‘right’ price to charge for a product is a complex task. A voluminous

literature in economics and marketing has been devoted to models which prescribe how

prices should be set in industries in which a limited number of competing firms offer

similar products, which may therefore be viewed as substitutes. These papers typically

model the interaction among competitors as a noncooperative game, see Vives (2000)

and Tirole (1988) for survey texts.

More recently, operations management papers have demonstrated that the opera-

112
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tional environment and associated cost structures may have a fundamental impact on

the equilibrium behavior in the industry, in general, and the resulting price levels in par-

ticular. See Cachon (2003) for a recent survey. Little remains known, however, about

how prices should be set in a competitive environment, in the simultaneous presence

of two other major complications:

(i) time dependent demand functions and cost parameters, and

(ii) scale economies in the operational costs

In contrast, progress has been made in addressing either one of these factors by

itself.

For example, Bernstein and Federgruen (2003) address a setting where each firm

incurs fixed as well as variable procurement costs along with (linear) inventory carrying

costs. However, the model assumes an infinite horizon setting with time-invariant de-

mand functions and cost parameters. Here the long-run average operational costs are

given by the simple closed-form Economic Order Quantity (EOQ) cost function, i.e. the

costs are given by the sum of a term that is proportional with the demand value itself

and one that is proportional with the square root of the demand value, thus reflect-

ing scale economies. Cachon and Harker (2002) similarly consider, for an industry

with two firms, a setting with a single set of time-invariant demand functions and

with a closed form cost function given by a concave power function of the demand

volume, (possibly in conjunction with a linear cost component), once again to reflect

scale economies. Other than the EOQ-cost model above, the authors show that their

cost structure arises in a specific service competition model.

At the same time, a stream of marketing papers address competitive pricing prob-
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lems under time-dependent demand functions, however with simple linear cost func-

tions, and under the assumption that each period’s demand is procured in the same

period, i.e. no inventories are carried. Theses paper include Kalish (1983), Eliashberg

and Jeuland (1986), Clarke and Dolan (1984), Rao and Bass (1985), and Dockner

and Jorgensen (1988). See Elmaghraby and Keskinocak (2003) for a survey. Perakis

and Sood (2003, 2004) and Kachani, Perakis and Simon (2004) also address competi-

tive pricing problems under time-varying demand functions. Since each firm starts the

planning horizon with a known inventory and inventories can not be replenished at any

time during the horizon, these models consider no replenishment costs.

This paper appears to develop the first competitive pricing model which combines

the complexity of time-varying demand and cost functions and that of scale economies

arising from dynamic lot sizing costs. Each firm can replenish inventory in each of the

T periods into which the planing horizon is partitioned. Fixed as well as variable pro-

curement costs are incurred for each procurement order, along with inventory carrying

costs. Each firm adopts, at the beginning of the planning horizon, a (single) price to

be employed throughout the horizon. Based on each period’s system of demand equa-

tions, these prices determine a time series of demands for each firm, which needs to

service them with an optimal corresponding dynamic lot sizing plan. Scale economies

always create major analytical complications in the study of price equilibria, see e.g.

Vives (2000) and Cachon and Harker (2002). In our case, the problems are com-

pounded by the fact that the cost structure can not be represented as a closed form

analytical function of the (time series of) demand volume(s).

We model each firm’s time dependent demand function as an affine transformation
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of a basic time-invariant demand function of general structure, i.e. the time invariant

demand function is multiplied by a firm- and period-dependent ‘seasonality’ factor and

shifted by a (firm- and period dependent) ‘seasonality’ term. This general framework

includes the special cases of multiplicative seasonalities and additive seasonalities.

We establish the existence of a price equilibrium and associated optimal dynamic

lotsizing plans, under mild conditions and employing a close approximation for the

optimal lotsizing costs. We also design efficient procedures to compute the equilibrium

prices and dynamic lotsizing plans. Finally, we characterize how the equilibrium is

affected by changes in various cost and demand function parameters. Much of the

analysis focuses on an individual firm’s best response problem, i.e. the characterization

of the optimal price and lot sizing strategy, in response to a given set of prices adopted

by the firm’s competitors. This best response problem is of interest in its own right. For

the case of multiplicative seasonalities and constant setup costs, we design an efficient

algorithm whose computational effort involves O(T 2) elementary operations and O(T)

maximizations of a single variable concave function. (For many classes of demand

functions, these maximizations can be performed in closed form). For the general

model, we develop an alternative solution method whose efficiency is demonstrated via

a numerical study. The algorithms for the best response problem are used repeatedly

in the procedure which computes the overall price and lotsizing equilibrium in the

industry.

The numerical study, in addition, reveals the following insights: contrary to folk-

lore, it is not always best for a firm to operate under time-invariant demand functions

or cost parameters. Even in equilibrium, all firms in the industry may be better off un-
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der certain types of seasonality patterns in the demand or cost parameters. When the

above mentioned mild existence conditions for a (unique) equilibrium fail to hold, the

industry may switch from having a unique equilibrium to either having none or having

multiple equilibria, depending on which seasonality pattern prevails.

One of the most fundamental assumptions in our model is that each firm maintains

a constant price throughout the sales season. In many industries this is the practice,

either because mid-season price changes can not be implemented (e.g. catalog sales)

or because they are managerially undesirable. For example, in many retail operations

it is considered unacceptable to raise prices during the season and at most one or two

markdowns in a single season are as much as contemplated. Empirical analysis has

documented that prices for certain goods are extremely ‘sticky’, i.e. they change very

slowly over time, if at all. Carlton (1986), for example, has investigated price data

for industrial buyers over a 10 year period and has concluded that the price rigidity in

many industries is striking. Kashyap (1995) analyzed the data from catalog sales and

observed that the prices typically remain constant over several seasons, beyond the

total of a year. As a third example, Cecchetti (1986) has studied newsstand prices for

some 40 American magazines over a period of close to 20 years. This author concluded

that prices exhibited remarkable rigidity to the extent of dropping in real (i.e. inflation

corrected) value by as much as a quarter before a price adjustment is implemented. See

Barro (1972), Sheshinski and Weiss (1977, 1983), and Caplin and Leahy (1991) for

theoretical models explaining price rigidity. Finally, Blinder et al (1998) document

and explain the multitude of reasons why companies maintain ‘sticky’ prices.

(As demonstrated below, at least the best response problems are considerably eas-
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ier under the alternative assumption where prices may be chosen and varied indepen-

dently in each period.)

The above not withstanding, we hope that our work will be extended to allow for a

limited or an arbitrary number of price changes.

Beyond the competition models mentioned above, we now give a brief review of

other literature that is relevant to our work. Even within the context of optimization

models with a single decision maker, the integration of pricing and inventory strategies

has only recently received the attention it deserves, even though the seminal papers

on dynamic lot sizing by Wagner and Whitin (1958, 1959) and Wagner (1960), 45

years ago, already addressed the need to integrate pricing and production planing de-

cisions. We refer to Eliashberg and Steinberg (1993) for a survey of early work and

to Elmaghraby and Keskinocak (2003) for a more recent survey.

Thomas (1970) addressed the dynamic lot sizing problem in which each period’s

demand depends (exclusively) on the price charged during this period according to a

period-specific demand function. Assuming prices can be changed arbitrarily from one

period to the next and that demand in a given period is independent of the prices

offered in other periods, the author shows that an optimal plan can be found by a

simple extension of the classical shortest path method by Wagner and Whitin (1958).

As in the classical dynamic lot sizing problem with exogenously specified demands,

it is easily verified that replenishment orders should only be placed in periods with zero

starting inventory. In view of this observation, the optimal procurement plan can thus

again be described as the shortest path in a network in which each period is represented

as a node and traversing an arc from period i to period j corresponds with the decision
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to satisfy all demands in period i, i+1, . . . , j−1 from a single order delivered in period i.

The only difference with the classical Wagner-Whitin shortest path procedure is that

evaluation of the (optimal) cost or profit value of any arc (i, j) now involves optimizing

a closed form expression over the prices in periods i, i+1, . . . , j−1. Thus, dynamic lot

sizing problems with arbitrary time-dependent prices are radically simpler than under

the requirement that a single constant price be used.

The best response problem which arises within our competition model was first ad-

dressed by Kunreuther and Schrage (1973). These authors propose a heuristic pro-

cedure which also generates an upper and lower bound for the optimal price. Gilbert

(1999) considers the special case of the best response problem in which only multi-

plicative seasonalities prevail and all cost parameters remain constant over the entire

planing horizon. One of our procedures for the best response problem is based on

Gilbert’s approach but reduces the computational complexity by an order of magni-

tude (O(T 2) compared to O(T 3) complexity), while addressing more general parameter

settings. This complexity reduction is particularly important in our competition model

where best response problems need to be solved repeatedly and for each of the N firms

in the industry.

The remainder of the Chapter is organized as follows: In Section 5.2 we specify

the general competition model and the notation. Section 5.3 is devoted to the best

response problem which arises under multiplicative seasonalities and constant set-up

costs. Section 5.4 addresses the fully general response problem. The equilibrium anal-

ysis for the competitive model is carried out in Section 5.5. Section 5.6 completes the

paper with a numerical study.
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5.2 Model and Notation

We consider an industry with N firms, each selling a distinct item or product brand.

We refer to the item sold by firm i as item i = 1, . . . , N. The different items are (close)

substitutes of each other, e.g. different brands of 19” television sets, digital cameras,

notebook computers, sport utility vehicles, tooth paste etc. We consider a planning

horizon of T periods. If the firms face a natural sales season introducing a new model

or variant in each season, a natural choice of T arises, e.g. T = 52 weeks in the auto-

mobile manufacturing industry operating with a weekly production and sales schedule.

Otherwise T is chosen large enough to ensure that the firms’ decisions pertaining to

the initial periods of the planning horizon are not affected by this truncation of the

planning process.

Each firm selects a (single) price to be used though out the planning horizon. (See

Section 1 for a discussion of this assumption.) Each firm’s demand in each period

depends potentially on the complete vector of prices selected in the industry according

to a general time-dependent demand function. Thus, let

pi = the price charged by firm i = 1, . . . , N

dit = the demand faced by firm i in period t = 1, . . . , T

= dit(p1, . . . , pN)

The time-dependence of the demand function is characterized by additive season-
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alities as well as multiplicative seasonality factors, i.e.

dit(p) = αit + βitδi(p) ∀ i = 1, . . . , N; t = 1, . . . , T (5.1)

with δi(p) the deseasonalized demand function for firm i, i = 1, . . . , N. The general

specification in (5.1) contains two important special cases: (a) a purely additive season-

ality structure arises when all βit = 1. In this case, the demand function of a given firm

undergoes parallel shifts as we move from one period to the next; (b) a purely multi-

plicative structure arises when all αit = 0; here, each firm’s demand is scaled up (βit > 1)

or down (βit < 1) compared to the deseasonalized norm.

The deseasonalized functions δi(p) are continuously differentiable, with ∂δi(p)
∂pi < 0,

i.e. a price increase results in in a decrease of the demand volume. Since the demand

function δi(p) is strictly decreasing in pi, it is possible to derive an inverse demand

function pi = φ(δi|p−i). We only assume that firm i’s revenue is concave in the demand

volume δi, i.e. Ri(δi|p−i) = δiφ(δi|p−i) is concave in δi. An important special case

arises when all deseasonalized functions are linear :

δi(p) = ai − bipi +
∑
j �=i
θijp

j i = 1, . . . , N, (5.2)

Without loss of generality, we assume that

bi >
∑
j �=i
θij , i = 1, ..., N. (5.3)

This standard assumption is often referred to as the Dominant Diagonal assumption.
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It merely precludes completely unrealistic situations where an across the board price

increase in the industry results in an increase of a firm’s sales volume. The firms

procure their goods by a production and distribution process which, in principle, allows

for inventory replenishments at the beginning of each period. As in standard dynamic

lot sizing problems, we assume that fixed as well as variable procurement costs are

incurred as well as inventory carrying costs which are proportional to each end-of-the-

period inventory. All cost parameters may fluctuate over the course of the planning

horizon in arbitrary ways. Thus let

Kit = the fixed setup cost for a procurement batch delivered to firm i in period t,

i = 1, . . . , N; t = 1, . . . , T

cit = the per unit procurement cost rate for a procurement batch delivered to

firm i in period t, i = 1, . . . , N; t = 1, . . . , T

hit = the inventory carrying cost for each unit of item i carried in inventory at the

end of period t, i = 1, . . . , N; t = 1, . . . , T

Each firm i thus selects a price pi as well as a complete procurement schedule for

the entire planning horizon to support the demand stream
{
dit(p)

}
which arises from

the collective price choices. Note that his price pi affects the profits earned by all firms

in the industry via its impact on each firm’s demand function and hence each firm’s

demand stream. At the same time, the procurement schedule selected by firm i impacts

only his own profit measure. It is thus possible to conceptualize the competition model

as a single stage game between N firms, in which each firm makes a single competitive

choice, i.e. its price level. The competition model may thus be viewed as an example of
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Bertrand price competition. (Alternatively, one may assume that each firm i selects a

basic deseasonalized target volume δi. This results in a vector of prices p which satisfy

the demand equations δi = δi(p), i = 1, . . . , N. We discuss this Cournot competition

variant at the end of Section 5.5). The game is characterized by the profit functions:

πi(p) = the profit earned by firm i under the price-vector p, assuming firm i adopts

an optimal dynamic lot sizing schedule to respond to the demand stream

{
dit(p) : t = 1, . . . , T

}

The profit function may be written in the form:

πi(p) = pi
T∑
t=1

dit(p)− Ci(p) i = 1, . . . , N (5.4)

where

Ci(p) = the minimum total operating costs for firm i to service the demand stream

{dit(p)}. The difficulty in analyzing the competition model and in characterizing its

equilibrium behavior, stems from the complexity of the cost functions Ci(p). Clearly,

the function Ci(p) cannot be represented as an analytical closed form expression. The

function can be evaluated for any given price vector p in O(T 2) time using the standard

Wagner-Whitin shortest path procedure and in O(T logT) time by one of the methods

in Aggarwal and Park (1993), Federgruen and Tzur (1991), or Van Hoesel and

Wagelmans (1992). Clearly Ci(p) depends on the price vector p ‘only’ through the

demand sequence
{
dit(p) = dit

}
.

Lemma 5.1 Ci is a piecewise linear concave function of the demand sequence
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{
dit = dit(p)

}
.

Proof: Fix a price vector p ∈ RN . Assume firm i chooses to replenish its inventory

in the set of periods Θ = {t1 = 1, t2, . . . , tn}. It is well known that a zero-inventory

ordering policy is optimal. This implies that the optimal cost under this sequence of

order periods is given by:

Ci(p|Θ) =
n∑
l=1

Kitl +
n∑
l=1

citl

tl+1−1∑
r=tl

dir (p)

+
n∑
l=1

tl+1−1∑
r=tl

hir (d
i
r+1(p)+ · · ·ditl+1−1(p)) (5.5)

where tn+1 = T + 1. Finally, Ci(p) = min
{
Ci(p|Θ)|Θ ∈ 2{1,... ,T}

}
, i.e. Ci(p) is the

minimum of (2T − 1) linear functions and is therefore concave in the vector

{
dit : t = 1, . . . , T

}
.

As a corollary of the above Lemma we obtain that, if all demand functions are linear,

the cost functions Ci(p) are piecewise linear and jointly concave in the price vector

p, itself. Unfortunately, this characterization is by itself insufficient to conduct the

equilibrium analyses. First, concave cost functions reflecting economies of scale create

major analytical difficulties in equilibrium analysis, see Vives (2000) and Cachon and

Harker (2002). Second, the fact that Ci(p) is not available in closed form generates

additional complexities. Finally, Ci(p) fails to be jointly concave in p for more general

non-linear demand functions.

Before providing a complete characterization of the industry’s equilibrium behavior,

we first analyze an individual firm’s best response problem. Thus, for any i = 1, . . . , N,

let
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πi(pi|p−i) = the profit for firm i when choosing price pi, given his competitors’

prices p−i = (p1, . . . , pi−1, pi+1, . . . , pN) and assuming firm i minimizes

operating costs to service the resulting demand stream
{
di(p)

}
.

The optimal profit for firm i, given his competitors choose prices p−i can then be

written as:

π∗i(p−i) = max
pi

πi(pi|p−i) (5.6)

We refer to the optimization problem in (5.6) as firm i’s best response problem.

5.3 The best response problem under multiplicative seasonali-

ties and constant setup costs

In this Section, we analyze a given firm i’s best response problem (5.6) in the impor-

tant special case where only multiplicative seasonality factors prevail (αit = 0) and

where firm i’s setup cost remains constant over the course of the planning horizon(
Kii = · · · = KiT

def= Ki
)

.

Note first that under the above special structure, for any sequence of order periods

Θ = {t, . . . , tn} with n setup periods (see (5.5)):

Ci(p|Θ) = nKi + δi(p)


n∑
l=1

citl

tl+1−1∑
r=tl

βir +
n∑
l=1

tl+1−1∑
r=tl

hir
(
βir+1 + · · · + βitl+1−1

)


(5.7)
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so that

Ci(p) = min
Θ∈2{1,... ,T}

Ci(p|Θ) = min
n

min
Θ|n

Ci(p|Θ) = min
n

{
nKi + δi(p)Fin(T)

}
(5.8)

where

Fin(t) = minimum total variable procurement and holding costs in periods {1, . . . , t}

for firm i, assuming the firm’s demand stream is given by the seasonality

factors
{
βi1, . . . , β

i
t

}
and assuming that exactly n setups are performed in

the first t periods t = 1, . . . , T ; n = 1, . . . , t, i = 1, . . . , N.

In the next subsection we develop an O(T 2) procedure to compute the matrix of

values
{
Fin(t); t = 1, . . . , T ;n = 1, . . . , T

}
. Thus, assuming these values have been de-

termined, it follows from (2) that the best response problem (5.6) reduces to:

π∗i(p−i) = max
pi

max
n




 T∑
t=1

βit


piδi(p)−nKi − δi(p)Fin(T)




= max
n

max
pi






 T∑
t=1

βit


pi − Fin(T)


δi(pi|p−i)−nKi


 (5.9)

= max
n

max
δi




 T∑
t=1

βit


Ri(δi|p−i)− Fin(T)δi −nKi




In other words, the best response problem reduces to T maximization problems

of a concave function of a single variable δi. If the revenue function Ri(δi|p−i) is

strictly concave, its derivative Ri′(·|p−i) is strictly decreasing and has an inverse func-

tion
(
Ri′
)−1

(·|p−i). The maximizing value of δi in (5.9) is then given by δ∗i(n) =
(
Ri′
)−1

(
Fin(T)∑T
t=1 β

i
t
|p−i

)
. Substituting this demand value into (5.9), we conclude that

the solution of the best response problem reduces to the determination of T closed
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form expressions (for n = 1, . . . , T ) involving the inverse derivative revenue functions

(
Ri′
)−1

(·|p−i). Assuming this function can be evaluated in constant time, the best

response problem can thus be solved in O(T 2) time.

Example 5.1: Assume the deseasonalized demand functions δi(p) are linear, as

in (5.5). This implies that at pi =
[
ai +∑j �=i θijpj − δi

]
/bi, giving rise to a quadratic

revenue function Ri(·|p−i) and an optimizing deaseasonalized demand volume

δ∗i(n) =



ai +

∑
j �=i θ

i
jp

j

2


− biFin(T)

2
∑T
t=1 β

i
t



+

(5.10)

and a corresponding price

p∗i =

ai +∑

j �=i
θijp

j − δ∗i

 /bi (5.11)

Substituting this value into (5.8), we obtain:

π∗i(p−i) =

max
n=1,... ,T




[√∑
t βit

2
√
bi

(
ai +∑j �=i θijpj

)
−

√
bi

2
√∑

t βit
Fin(T)

]2

−nKi , if δ∗i(n) > 0

−nKi , otherwise

(5.12)

which provides a closed form expression for the best response profit function in terms

of the values
{
Fi1(T), F

i
2(T), . . . , F

i
T (T)

}
.
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An O(T 2) procedure to compute the optimal lot sizing cost when restricted to

a given number of order periods

In this Subsection, we develop an O(T 2)-procedure to compute the values

{
Fin(T) : n = 1, . . . , T

}
we need in the evaluation of (5.9). As mentioned in the intro-

duction, this procedure bears similarities to the O(T 3)-procedure in Gilbert (1999)

for the case where all cost parameters are assumed to be constant over the course of

the planning horizon. (Gilbert addresses a single firm problem.) The procedure, in

fact, computes all entries of the matrix F
def=

{
Fin(t) : n = 1, . . . , T ; t = 1, . . . , T

}
, row

by row, starting with the values
{
Fi1(t) : t = 1, . . . , T

}
in the first row. To simplify the

expressions we drop the superscript in this subsection. We first need the following

notation:

B(t) =
∑t
k=1 βk = the cumulative demand factors over the first t periods

ckl = ck + hk + · · · + hl−1 = the variable cost of procuring a unit in period k and

maintaining it in inventory until period l(k < l)

= ck,l−1 + hl−1

H(t) =
∑t
k=1hk = the cost of carrying a unit of in stock from periods 1 until the

beginning of period t + 1

= H(t − 1)+ ht

S(k, t) = the total inventory carrying cost in periods k, k + 1, . . . , t when placing an

order in period k to meet the cumulative demand in periods k, . . . , t.

s(t) = S(1, t) = s(t − 1)+ βtH(t − 1).
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C̃(k) = ckT − h1T = ck −H(k− 1)

(Note for all k < l, C̃(l)− C̃(k) represents the additional cost of procuring a unit in

period l as opposed to procuring it in the earlier period k and keeping it in inventory

until (at least) period l.)

Note that the first row of the matrix F , i.e. the values {F1(t) : t = 1, . . . , T} are easily

obtained in O(T) time from the recursion:

F1(1) = c1β1; F1(t) = F1(t − 1)+ c1βt + βtH(t − 1), t = 2 . . . , T (5.13)

Assume therefore that the first (n − 1) rows of F have been calculated. We now show

how the n−th row can be determined in O(T)-time by a ‘list-based’ procedure, sim-

ilar to that in Federgruen and Tzur (1991) for the unrestricted lot sizing problem.

(The procedure is, in fact, considerably simpler than the one in Federgruen and Tzur

(1991), as we take advantage of the absence of setup costs). To this end, let for all

t = 1, . . . , T .

Fn(l, t) = the minimum cost in periods 1, . . . , t, under exactly n orders, when period

l is the last order period preceding period t.

To determine whether for a given horizon t = 1, . . . , T , some period l is a better

‘last’ order period than some earlier period k < l, we consider the difference function

∆n,k,l(t) = Fn(k, t)− Fn(l, t). Observe that

Fn(l, t) = Fn−1(l− 1)+ S(l, t)+ cl[B(t)− B(l− 1)] (5.14)

Fn(k, t) = Fn−1(k− 1)+ S(k, t)+ ck[B(t)− B(k− 1)] (5.15)
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Subtracting (5.14) from (5.15), we obtain after some algebra that

∆n,k,l(t) = An(k, l)+ [C̃(k)− C̃(l)]B(t) (5.16)

where

An(k, l) = Fn−1(k− 1)− Fn−1(l− 1)+ s(l− 1)− s(k)

+C̃(k)[B(l− 1)− B(k− 1)]+ βkH(k− 1) (5.17)

+B(k− 1)(C̃(l− 1)− C̃(k))

Thus, the difference function ∆n,k,l(t) depends on the cost and demand parameters in

the periods l+1, . . . , t only via the single characteristic B(t), i.e. the cumulative demand

factor in periods 1, . . . , t. Furthermore, it is easy to characterize for which values B(t),

k dominates l as a last order period. Consider the following two cases:

(I) C̃(k) ≤ C̃(l): The condition is equivalent to ck,l ≤ ck; in this case, it is never

strictly better to use l as the last order period rather than an earlier period. To show

this, consider an optimal zero-inventory ordering plan for some planing horizon t ≥ l,

with l as the last order period. Since ck,l ≤ cl, costs do not increase when placing the

order in the earlier period k. The resulting policy may fail to be a zero-inventory policy

but via a series of perturbations it can be transformed into a zero-inventory policy of

equal or lower cost with the same set of order periods, i.e. with a period before l as the

last order period.

(II) C̃(k) > C̃(l): In this case, it follows from (5.17) that l is a strictly better last order
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period than k if and only if

B(t) > Rn(k, l)
def= An(k, l)/[C̃(k)− C̃(l)] (5.18)

Since each of the values in {Fn(t) : t = 1, . . . , T} represents the cost of a zero-inventory

policy, these values are completely characterized by determining for all t = 1, . . . , T :

ln(t) = the optimal last order period for the time interval [1, t], when the total

number of orders in this interval must equal n, i.e.

Fn(t) = Fn (ln(t), t) = min
l≤t

Fn(l, t) (5.19)

(If more than one period qualifies as an optimal last order period, define ln(t) as the

smallest such period). Clearly Fn(t) = ∞, if t < n, so we can restrict ourselves to the

case where t ≥ n.

To construct the list {ln(t) : t = 1, . . . , T}, our procedure, iteratively for

j = n, . . . , T , constructs an (ordered) list

Ln(j) =
{
i : n ≤ i ≤ j : i is the (lowest indexed) best last order period for some

planning horizon t > j, with potential cumulative demand factor B(t) ≥ B(j)}, along

with an ascending list of critical cumulative demand values

{
B(j) = r(1) < r(2) < · · · < r(m)}, with m = ∣∣Ln(j)∣∣. The k-th element of the list

Ln(j) is the best last order period (under the restriction of n orders) for any horizon

t ≥ j with cumulative demand r(k) ≤ B(t) ≤ r(k+ 1), k = 1, . . . ,m. (Here, r(m+ 1) =

∞.) Thus, under the restriction of n orders, Ln(j) is a list containing all periods among
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the first j periods, which may arise as an optimal last order period for some horizon

t > j. In constructing this list, we treat all future demand factors βj+1, . . . , βT as

unknown.

Clearly, the list
{
ln(j) : j = 1, . . . , T

}
of actual optimal last order periods is simply

the list of the first elements of the respective lists {Ln(1),Ln(2), . . . ,Ln(T)}.

The following lemma identifies an effective way to ‘update’ the lists

{Ln(j) : j = 1, . . . , T
}
. Clearly, Ln(n) = {n} with r(n) = B(n).

Lemma 5.2 Fix j = 1, . . . , T and let Ln(j) = (i1, . . . , im)

(a) The periods in the list Ln(j) are distinct.

(b) Ln(j + 1) ⊆ Ln(j)∪ {j + 1}

(c) The periods appear in the list Ln(j) in descending order of their C̃ values, i.e.

C̃(i1) > C̃(i2) > · · · > C̃(im)

(d) If C̃(j + 1) ≥ C̃(im), then the list Ln(j + 1) = Ln(j) and the critical values

r(1), . . . , r (m) remain unchanged as well.

(e) If C̃(j + 1) < C̃(im), period j + 1 enters at the bottom of the list. To determine the

corresponding r(·)-value, as well as which of the existing elements of the list are to

be removed, compute sequentially for k =m,m−1, . . .1 the root r∗ = Rn(ik, j+1)

and eliminate period ik from the list as long as r∗ ≤ r(k). The last computed root

r∗ has r∗ > r(k) and is the r(·)-value for period j + 1.

Proof. (a) Assume, to the contrary, that some period i appears more than once

in the list, i.e. it is the best order period in two distinct intervals for the cumulative
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demand factor B(t), but for some in between values of B(t) some other period k is a

better last order period. This implies that the difference function ∆n,k,l(t), viewed as a

function of B(t), switches signs at least twice. Since the function is linear in B(t) this

results in a contradiction.

(b) Immediate.

(c)–(e): These parts are proven by induction with respect to j = 1, . . . , T . Assume

therefore that for the j-th list Ln(j), C̃(i1) > C̃(i2) > · · · > C̃(im). If C̃(j+1) ≥ C̃(im),

we have shown under (I) above, that period im is a better last order period than period

j+1 for any future horizon t > j. This proves part (d). Since the list remains unaltered,

its elements continue to be ordered in decreasing order of their C̃()-values. If C̃(j+1) <

C̃(im), C̃(j + 1) is smaller than the C̃(·)-value of all elements of the list Ln(j), so that

(j + 1) is the best last order period among all periods 1, . . . , j + 1 for B(t)-values that

are sufficiently large. This implies that (j + 1) is to be added to the list and since, by

part (a), it enters in the list only once, it enters at the bottom of the list. This implies

that the elements of the list Ln(j+1) continue to be ranked in decreasing order of their

C̃(·)-values, regardless of what elements of the list need to be eliminated, if any. This

completes the induction proof for part (c). To verify the validity of the list-updating

procedure in part (e), assume first that r∗ = Rn(im, j + 1) > r(m). For B(t) ≥ r∗,

period (j + 1) is a better last order period than im and the list Ln(j) reveals that the

latter dominates all other periods in {1, . . . , j} on this half line. Thus, for B(t) > r∗,

period (j+1) is the best last order period among all of the first (j+1)-periods. On the

other hand, for r(m) ≤ B(t) ≤ r∗, period im dominates period (j+1) as well as all

periods in
{
1, . . . , j

}
, so it is the best last order period among the first (j+1)-periods. It
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is also easily verified that each of the previous elements ik, k < m in the list continues

to dominate on the interval [r(k), r(k + 1)] even when considering period (j+1) as an

alternative. We conclude that, in this case, the list Ln(j + 1) is obtained from the list

Ln(j), simply by appending period (j + 1) to its tail with g(m+ 1) = r∗.

Consider now the remaining case where r∗ = Rn(im, j + 1) < r(m). In this case,

period im is dominated by period (j+1) for B(t) ≥ r(m), while it is dominated by some

period in {1, . . . , j} for B(t) < r(m). This implies that period im is to be eliminated

from the list and the updating process can now proceed with this curtailed list.

Remark: Upon completion of the list Ln(j+1), it is advisable to consider the actual

cumulative demand factor value B(j + 1) and eliminate from the front of the list all

elements with an r(·)-value below B(j+1). (After all, all future horizons t > j+1 have

B(t) ≥ B(j + 1).)

The following summarizes he full algorithm to determine the complete matrix F =

{Fn(t) : n = 1, . . . , T ; t = 1, . . . , T}

We maintain at each iteration on ordered list

L = ({N[FIRST],N[FIRST + 1], . . . ,N[LAST]}) such that for j = 1, . . . , T , L = Ln(j)

at the end of the j-th iteration. The records in this list are numbered FIRST, FIRST+1, . . . ,

LAST for appropriate values of FIRST and LAST. The k-th record (FIRST ≤ k ≤ LAST)

contains two numbers {N[k], r(k)}.

As explained, periods are eliminated from either the front or the tail of the list

Ln(·). We therefore distinguish between two elementary procedures:

(i) DELTOP: this procedure deletes the first record of the list and sets FIRST :=

FIRST=1;
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(ii) DELBOT: the procedure deletes the last record of the list and sets LAST := LAST-1;

Algorithm 1 Algorithm Restricted Lot Sizing
1: F1(1) := c1β1

2: for j = 2 : 1 : T do
3: B(j) := B(j − 1)+ βj
4: H(j) := H(j − 1)+ hj
5: C̃(j) := cj −H(j − 1)
6: s(j) := s(j − 1)+ βjH(j − 1)
7: F1(j) := F1(j − 1)+ c1βj + βjH(j − 1)
8: end for
9: for n = 2,1, T do

10: for j = 1,1, n− 1 do
11: Fn(j) := ∞
12: FIRST := 1
13: LAST := 1
14: N[FIRST] := n
15: r[FIRST] := B(n)
16: r[FIRST + 1] := ∞
17: end for
18: for j = n,1, T do
19: while r[FIRST + 1] ≤ B(j) do
20: DELTOP
21: end while
22: if C̃(j) < C̃(LAST) then
23: while Rn(N[LAST], j) ≤ r(LAST) do
24: DELBOT
25: r(LAST + 1) := Rn(N[LAST], j)
26: N[LAST + 1] := j
27: LAST := LAST + 1
28: end while
29: l := ln(j) := N[FIRST]
30: Fn(j) := Fn−1(l)+ cl(B(j)− B(l− 1))+ s(j)− s(l)−H(l− 1)(B(j)− B(l))
31: end if
32: end for
33: end for

It is easily verified that the computation of each row in the matrix F, i.e. the ef-

fort expended in the outer ‘for do’ loop in Step 1 is O(T). (Note that the procedure

DELTOP and DELBOT are invoked at most (T-n+1) times during this loop, since each

period in {n, . . . , T} can be eliminated at most once, either by DELTOP or by DELBOT.



135

Both procedures are of complexity O(1) as is the computation of the roots Rn(1,1) via

(5.18)).

Example 5.2: Consider an industry with N = 3 firms and deseasonalized demand

functions:

δ1(p) = 400− 10p1 + p2 + p3 (5.20)

δ2(p) = 250+ p1 − 12p2 + 10p3 (5.21)

δ3(p) = 250+ p1 + 10p2 − 12p3 (5.22)

The firms face a planning horizon of T = 54 periods. We consider six different multi-

plicative seasonality patterns {βt : t = 1, . . . ,54}, which are common to all three firms,

as follows:

(I) (Time-invariant demand function) βt = 1 ; t = 1, . . . ,54

(II) (Linear Growth) βt = 0.25+ 1.5 (t−1)
53 ; t = 1, . . . ,54

(III) (Linear Decline) βt = 1.75− 1.5 (t−1)
53 ; t = 1, . . . ,54

(IV) (Holiday Season at Beginning of Planning Horizon)

βt =




54
114 + 540

570(t − 1) , t = 1, . . . ,6

594
114 − 540

570(t − 7) , t = 7, . . . ,12

54
114 , t = 13, . . . ,54

(5.23)
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(V) (Holiday Season at End of Planing Horizon)

βt =




54
114 , t = 1, . . . ,42

54
114 + 540

570(t − 43) , t = 43, . . . ,48

594
114 − 540

570(t − 49) , t = 49, . . . ,54

(5.24)

(VI) (Cyclical Pattern)

βt =




0.25+ 0.75(t − 1) , t = 1, . . . ,3

1.75− 0.75(t − 4) , t = 4, . . . ,6

βtmod6 , t = 7, . . . ,54

(5.25)

where t mod 6 denotes t modulo 6. Note that the average seasonality factor

1
54

∑54
t=1 βt = β̄ = 1 in all six patterns (I)–(VI). The first pattern reflects a situation where

demand functions are time-invariant and the second (third) pattern one with linear

growth (decline). The fourth and fifth pattern represent a planning horizon with a

single season of peak demands either at the beginning or at the end of the planning

horizon. Finally, the last pattern (VI) is cyclical with a cycle length of 6 periods, such

that demands in the two middle periods of each cycle are 7 times their value in the first

and last period, while βt = 1 in the remaining two periods of the cycle.

All three firms share the same cost parameters which are time-invariant: Kit =

1000; cit = 15; hit = 5 for all i = 1, . . . ,3; t = 1, . . . ,54. Since the firms have iden-

tical c- and h- values and the firms have identical seasonality patterns, they also share

the same values for
{
Fin(t) : t = 1, . . . ,54

}
. In Figure 5.1(a) and 5.1(b) we display the

values {Fn(54)} as a function of the permitted number of setup periods n = 1, . . . ,54,
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Figure 5.1(a): Fn(54) as a function of the number of setups periods n, patterns (I)-(III)
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for the six seasonality patterns (I)–(VI). Observe that the Fn(54)-values are significantly

different across the six patterns, for small numbers of permitted setup periods, but the

relative difference gradually decreases as n increases. Since the parameters cit param-

eters are constant over time, the variable procurement cost component in {Fn(54)} is

identical for all n = 1, . . . ,54 and for all seasonality patterns (I)–(VI). All differences

in the {Fn(54)} values are therefore attributable to differences in the holding costs.

These, of course, decline to zero as n increases to 54. For all n ≥ 7, the cyclical pattern

(VI) is the least expensive to service and the time-invariant pattern (I) the most expen-

sive. This contradicts common folklore which assumes that optimal costs are achieved

when one is facing a smooth, time-invariant sales pattern.

The curves {Fn(54) : n = 1, . . . ,54} can be approximated very closely by curves of
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Figure 5.1(b): Fn(54) as a function of the number of setups periods n, patterns
(IV)-(VI)
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the shape

Fin(54) ∼
(∑

βit
)[(

ci + ηi
)
+ ζ

i

n

]
, n = 1, . . . ,54 (5.26)

for appropriate constants ηi, ζi > 0. For example, ηi and ζi can be chosen to min-

imize the sum of squared differences between the left and the right sides of (5.26).

For pattern (I) and (II), for example, we thus obtain (η1, ζ1) = (−2.275,134.595) and

(η6, ζ6) = (−3.378,133.810) with average relative differences between the exact and

the approximate curve of 0.6% and 3.3 %, respectively. We have found that approxima-

tions of the type (5.26) are, in fact, very close, across the board, for any combination of

cost values and seasonality patterns.

Several facts explain the extreme goodness of fit: in our numerical experience, the

function Fn(T) is always convexly decreasing in n. We conjecture that this is always

the case. To motivate this conjecture, note that Fn(T) may be viewed as the value of

an n-median problem. Once again, it is unknown whether the optimal cost-value of

an n-median problem is convex in n, but it is known from Cornuejols et al. (1977),

Nemhauser et al. (1978) and Nemhauser and Wolsey (1988) that the greedy heuristic

solution for the n-median problem is a very close approximation (both in terms of worst

case and average performance) and the cost value of this greedy heuristic solution is

convexly decreasing. The greedy heuristic, applied to our lot sizing problem, adds in

the n+ 1st iteration a new setup period to the n periods selected in the first n periods

which results in the largest cost decrease. The approximation (5.26) will be used in the

equilibrium analysis in Section 5.5.
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Figure 5.2: Optimal profit for firm 1 as a function of permitted number
of setups under pattern (I) and (VI) when Kit = 1000
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We now turn to the best response problem firm 1 faces when both of his competi-

tors choose a price value of $30. Based on (5.11) and (5.12), Figure 5.2 exhibits the

optimal profit π∗i(n) for pattern (I) and (VI) as a function of the permitted number

of setups n. The globally optimal prices which solve the best response problem are

$31.75 and $30.89 and correspond with a lot sizing schedule with n = 27 for pattern

(I) and n = 35 for pattern (VI).

5.4 The Best Response Problem: The General Case

In the Section we address the best response problem (5.6) for the general case where

additive as well as multiplicative seasonalities exist and where all cost parameters vary

in arbitrary ways over the course of the planning horizon. In the most general case, no

solution procedure appears to exist, which, in the worst case, involves a polynomially

bounded number of elementary operations or evaluations of a simple, analytical closed
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form function. However, a highly efficient procedure can be developed based on the

following result:

For any given set of periods Θ ∈ 2{1,... ,T}, let Pi(Θ|p−i) =
{
pi|Θ is an optimal set

of order periods to service the demand stream {dit(p) : t = 1, . . . , T}
}
.

Lemma 5.3 Fix i = 1, . . . , N and a vector p−i of prices for firm i’s competitors

(a) Pi(Θ|p−i) is a closed interval.

(b) Let [pi0, p
i
1] denote the closed interval Pi(Θ0|p−i). Let δi0 = δi(pi0|p−i) and

δi1 = δi(pi1|p−i). Firm i’s profit is a concave differentiable function of δi on the interval

[δi1, δ
i
0].

Proof: Fix Θ0 ∈ 2{1,... ,T}. We first show that Pi(Θ0|p−i) is convex. Thus, let pi1 <

pi2 ∈ Pi(Θ0|p−i) and assume to the contrary that for some pi3 with pi1 < pi3 < pi2,

Θ0 fails to be an optimal set of order periods. Let Θ1 be a sequence of order periods

which is optimal to use under price level pi3. Note from (5.5) that Ci(p|Θ) is an affine

transformation of the deseasonalized demand function δi(p), i.e.

Ci(p|Θ) = A(Θ) + B(Θ)δi(p), with A(Θ) and B(Θ) constants, independent of any

price choices. Thus, Ci(p|Θ0) − Ci(p|Θ1) = [A(Θ0) − A(Θ1)] + [B(Θ0) − B(Θ1)]δi(p)

is a monotone function of pi, since δi(p) is a strictly decreasing function of pi. Yet

Ci((pi1, p−i)|Θ0)− Ci(pi1, p−i)|Θ) ≤ 0, since pi1 ∈ Pi(Θ0|p−i)

Ci((pi3, p−i)|Θ0)− Ci((pi3, p−i)|Θ1) > 0, since pi3 �∈ Pi(Θ0|p−i), p3
i ∈ Pi(Θ1|p−i)

Ci((pi2, p−i)|Θ0)− Ci((pi2, p−i)|Θi) ≤ 0, since pi2 ∈ Pi(Θ0|p−i), indicating that this

difference function fails to be monotone in pi, thus resulting in a contradiction.

Since Pi(Θ0|p−i) is a convex set, it is an interval. To show that that his inter-
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val is closed, consider a sequence {pik}∞k=1 with pik ∈ Pi(Θ0|p−i) for all k = 1,2, . . .

and limk→∞ pik = pi∗. Thus, Ci((pik, p
−i)|Θ0) ≤ Ci((pik, p

−i)|Θ) for all order period

sequences Θ ∈ 2{1, ... ,T}. Taking limits on both sides of the inequality and using the

continuity in p of the Ci(p|Θ) function we conclude that the limit pi∗ satisfies the

inequality as well, i.e. pi∗ ∈ P(Θ0|p−i).

(b) Per definition, on the interval Pi(Θ0|p−i), Ci(p) = Ci(p|Θ0)

= A(Θ0)+B(Θ0)δi(p), so that firm i’s profit Πi(δi|p−i) = Ri(δi|p−i)−A(Θ0)−B(Θ0)δi

is a concave function of δi.

Lemma 5.3 suggests the following best response algorithm. Once again, fix

i = 1, . . . , N, p−i and a (small) precision number ε > 0.

Algorithm: Best Response Problem

Step 0 (Initialization): Set l := 1;π∗ := 0, pi1 := pimin;δi1 = δi(pi1|p−i).

Step 1 (Iterative Step): For pi = pil + ε, determine an optimal sequence of order pe-

riods Θl as well as the coefficients A(Θl), B(Θl), i.e. Ci(p|Θl) = A(Θl)+B(Θl)δi(p) (e.g.

with the O(T logT) method in Federgruen and Tzur (1991)). With simple bisection,

determine within ε, piu = max
{
pi ≤ pimax|Θl is an optimal sequence of order periods

for the price pi
}
; δiu = δi(piu|p−i). Determine

π∗l = maxδiu≤δi≤δil
{
Ri(δi|p−i)−A(Θl)− B(Θl)δi

}
where the function within curled

brackets is concave in δi. If π∗l > π
∗ then π∗ := π∗l .

Step 2: If piu < pimax then begin l := l+ 1;pil = piu;δil = δiu; return to Step 1 end

This Algorithm thus partitions the complete price interval [pimin, pimax] into L ≥ 1 con-
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secutive subintervals, such that on each subinterval a given sequence of order periods

Θ remains optimal. On each interval the profit function is a simple differentiable con-

cave function of δi whose maximum can be found by comparing the values at the end

points with that in the (at most) single stationary point where the derivative of the

profit function equals zero.

If the interval [pimin, pimax] is partitioned in to L subintervals, i.e. if Step 1 is

repeated L times, the total effort to identify the end points of the subintervals is

O
(
L
⌈

log2

(
pimax−pimin

ε

)⌉
T logT

)
while the effort to optimize the profit-function on each

of the subintervals amounts to L maximizations of a differentiable concave (closed

form) function of a single variable.

Example 5.3: Consider the previous example, however with additive rather than

multiplicative seasonality terms, which are again identical to all three firms, i.e. let

βit = 1, and αit = −100+ 200
53 (t − 1), t = 1, . . . ,54.

Thus, each period a firm’s demand function is shifted upwards by a constant

amount and 1
54

∑54
t=1α

i
t = 0. Consider, again, firm 1’s best response problem which

arises when his competitors adopt a price of $ 30, i.e. p2 = p3 = 30. In Table 1, we

display the intervals identified by the ‘Algorithm Best Response Problem’. along with,

for each of the intervals, the optimal price for firm 1, corresponding profit level and

the number of setups periods in the last column which is optimal for this interval.
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Table 5.1: Intervals generated by Algorithm ‘Best
Response Problem’ for firm 1 in Example 3

LB UB OptPrice Profit Setups

0.000 16.374 16.374 75730 54
16.384 17.141 17.141 76440 53
17.151 17.878 17.878 77110 52
17.888 18.640 18.640 77750 51
18.650 19.404 19.404 78350 50
19.414 20.151 20.151 78920 49
20.161 20.911 20.911 79450 48
20.921 21.664 21.664 79940 47
21.674 22.409 22.409 80400 46
22.419 23.168 23.168 80830 45
23.178 23.923 23.923 81210 44
23.933 24.682 24.682 81570 43
24.692 25.437 25.437 81880 42
25.447 26.184 26.184 82170 41
26.194 26.950 26.950 82410 40
26.960 27.693 27.693 82630 39
27.703 28.457 28.457 82800 38
28.467 29.210 29.210 82940 37
29.220 29.968 29.968 83050 36
29.978 30.337 30.337 83190 35
30.347 31.092 31.092 83240 34
31.102 31.475 31.475 83290 33
31.485 32.235 31.611 83290 32
32.245 32.604 32.245 83240 31
32.614 33.361 32.614 83190 30
33.371 33.736 33.371 83040 29
33.746 34.107 33.746 82760 28
34.117 34.875 34.117 82660 27
34.885 35.242 34.885 82380 26
35.252 35.620 35.252 81770 25
35.630 35.994 35.630 81280 24
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5.5 The Equilibrium Analysis

In this Section, we analyze the equilibrium behavior in the industry under price—or

Bertrand competition. (See however, the end of this section for a discussion of the case

of Cournot competition.) Once again, we start with the case where all firms experience

only multiplicative seasonalities and their fixed and variable order cost parameters

remain constant throughout the planning horizon. (The best response problem of Sec-

tion 5.3 thus applies; we append the assumption of constant variable order cost rates

to simplify the exposition below.) Thus, let Ki = Ki1 = . . . = KiT and ci = ci1 = . . . = ciT

for all i = 1, . . . , N.

Substituting the expression (5.8) for the cost function Ci(p) as well as the identity

dit(p) = βitδi(p) in the profit function (5.4), we obtain:

πi(p) = Bi(T)piδi(p)− min
n=1,... ,T

{
nKi + Bi(T)ciδi(p)+ δi(p)F̃in(T)

}
(5.27)

where F̃ in(t) = minimum total holding costs in periods {1, . . . , t} for firm i, assuming

the firm’s demand stream is given by seasonality factors
{
βi1, . . . , β

i
T

}
and assuming

exactly n order are placed in the first t periods, t = 1, . . . , T , n = 1, . . . , t, i = 1, . . . , N.

F̃ in(t) = Fin(t)− ci
t∑
s=1

βis (5.28)

It is difficult to guarantee the existence of a Nash equilibrium on the basis of the exact

characterization of the cost function Ci(p) as a piecewise linear function of the desea-

sonalized demand volume δi(p). Note, for example, from (5.10) – (5.12), that firm i’s
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best response price fails to vary continuously with the competitor’s prices, even tough

the points of discontinuity form a set of measure zero. However, as substantiated in

Section 5.3, the values
{
F̃ in(t)

}T
n=1

are closely approximated by a function of the from

(5.26). Substituting (5.26) into (5.27) and treating the number of order periods n as a

continuous variable, we obtain the (approximate) profit functions

π̃i(p) = Bi(T)δi(p)(pi − ci)−min
n≥0

{
nKi + Bi(T)ηiδi(p)+ B

i(T)ζiδi(p)
n

}

= Bi(T)δi(p)(pi − ci − ηi)− 2
√
Kiζi

√
δi(p)

= Bi(T)


δi(p)(pi − ηi − ci)−


2
√
Kiζi

Bi(T)


√δi(p)


 , 1 = 1, . . . , N (5.29)

where the first equality follows from simple calculus as in the well-known Economic

Order Quantity (EOQ) model.

The approximation (5.26) for the values
{
F̃ in(T)

}
thus permits us to represent the

cost function as one consisting of an explicit linear term in δi(p) plus a term propor-

tional to the square root of this deseasonalized demand value. A price competition

game in which each firm selects a price from a closed interval and with profit functions

of the type (5.29) has been analyzed by Cachon and Harker (2002) and Bernstein and

Federgruen (2003). The former confine themselves to the case where the number of

firms N = 2. Without guaranteeing that an equilibrium exists, they establish a sufficient

condition under which the existence of multiple equilibria can be excluded. Bernstein

and Federgruen (2003) show that the existence of an equilibrium can, indeed, not

be guaranteed under completely arbitrary parameters. They identify, however, for the

case of linear deseasonalized demand functions, see (5.2), a simple sufficient condition
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for the existence of an equilibrium, which relates the demand elasticity of a firm with

respect to its own price to the firm’s inventory-to-sales ratio. More specifically, assume

the demand functions
{
δi(p)

}
satisfy (5.2).

Let εii = ∂δi(p)
∂pi

pi
δi(p) =

bipi
δi(p) the absolute value of the demand elasticity of firm i

with respect to its own price.

INVi = 2
√
δi(p)Kiζi = firm i’s optimal inventory and fixed order costs over the

course of the planning horizon, under the price vector p.

REVi = Bi(T)piδi(p) = firm i’s total gross revenue over the course of the planning

horizon, under the price vector p.

Theorem 1 in Bernstein and Federgruen (2003) shows that a Nash equilibrium

exists in the price competition model if the following condition (C) is satisfied:

(C) εii ≤ 8
REVi

INVi
, i = 1, . . . , N (5.30)

The ratio REVi/INVi is closely related to the (annual) sales-to-inventory ratio, one

of Wall Street’s most frequently monitored company measures. Bernstein and Feder-

gruen (2003) argue that the ratio REVi/INVi is, in fact, at least 2.5 times the sales-to-

inventory ratio. Moreover, analyzing data by Dun and Bradstreet (2001), the authors

show for a sample of 10 consumer product lines that the average lower quartile of the

sales-to-inventory ratio varies between 2.8 and 6.7 for the 10 product lines. As a conse-

quence, the right hand side of the inequality in (C) varies between 56 and 134, while the

absolute value of the price elasticity varies between one and five, see e.g. Tellis (1988).

Thus, condition (C) is very comfortably satisfied for virtually all production lines and
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industries.

While condition (C) guarantees that a Nash equilibrium exists, two important ques-

tions remain: (a) Is the Nash equilibrium unique or can multiple equilibria arise, mak-

ing it hard to predict which of the possible equilibria the industry will adopt and (b)

How can the equilibrium (or equilibria) be computed efficiently? Theorem 2 in Bern-

stein and Federgruen (2003) shows that under a slight tightening of condition (C), a

unique equilibrium can indeed be guaranteed and that this unique equilibrium can be

efficiently computed as the limit point of the following simple (iterative) tatônnement

scheme:

Tatônnement scheme: Starting with an arbitrary price vector p(0), in the k-th itera-

tion of the scheme, each firm determines the price pi(k) which solves the best response

problem (5.6), assuming all competing firms’ prices are set according to their value in

the price vector p(k−1). Consider condition (C2):

(C2) εii ≤ 4
REVi

INVi
(5.31)

As reviewed above, condition (C2), which is somewhat tighter than (C), is still very

comfortably satisfied for virtually all product lines. We conclude:

Theorem 5.1 Assume the deseasonalized demand functions {δi(p)} are linear, i.e. they

satisfy (5.2). Assume only multiplicative seasonalities apply (αit = 0), while all fixed and

variable cost parameters are constant throughout the course of the planning horizon,

i.e. Ki1 = . . . = KiT = Ki and ci1 = . . . = ciT = ci. Consider the price competition game

under the (approximate) profit functions π̃i(p).
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(a) Under condition (C), the price competition game has a Nash equilibrium

(b) Under condition (C2), the price competition game has a unique equilibrium p∗.

The tatônnement scheme converges to p∗ from any starting point p0.

Proof: Immediate from Theorem 1 and 2 in Bernstein and Federgruen (2003).

The tatônnement scheme consists of repeated solutions of best response problems.

The availability of efficient procedures to solve the best response problems (see Section

5.3) is therefore of critical importance.

It is difficult to establish a similarly intuitive sufficient condition to guarantee the

existence of an equilibrium in the general model, with nonlinear deseasonalized de-

mand functions or time-dependent order cost parameters. However, thanks to the

availability of the best response algorithms in Section 5.3 and 5.4, the tatônnement

scheme can be applied effectively to the fully general model. When convergent, its limit

point is, of course, a Nash equilibrium. If convergent to the same limit point, regard-

less of its starting point p(0), the equilibrium is in fact unique. Thus, the tatônnement

scheme provides an algorithmic mechanism to establish the existence of a Nash equilib-

rium in any given instance of the general model. Indeed, we have applied the scheme to

a large variety of problem instances of the general model and have found hat a unique

equilibrium exists in the vast majority of cases.

We conclude this Section with a brief discussion of the case where the firms engage

in Cournot (quantity competition) as opposed to Bertrand (price competition). Con-

sider, again, the conditions stated in Theorem 1, and assume the approximate profit

functions π̃i(·) are used. Under (5.5), the system of (deseasonalized) demand func-
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tions can be inverted resulting in the inverse demand functions:

pi = âi − b̂iδi −
∑
j �=i
θ̂ijδ

j , i = 1, . . . , N where b̂i, θ̂ij ≥ 0 (5.32)

It follows from Theorem 3 in Bernstein and Federgruen (2003) that an equilibrium

exists under condition (C) and that this equilibrium is unique under (C2) and the con-

dition

b̂i >
∑
j �=i
θ̂ij , i = 1, . . . , N, (5.33)

the direct counterpart of (5.5) for inverse demand functions. Thus, the same condi-

tion (C) guarantees an equilibrium both under price- and under quantity competition.

Moreover, an analogous pair of conditions guarantees that the equilibrium is unique.

However, in contrast to the case of price competition, it is no longer possible to ensure

that the tatônnement scheme converges to an equilibrium, even when the existence of

a unique equilibrium can be guaranteed.

5.6 Numerical Examples

In this Section, we report on a numerical study conducted to investigate the effect on

the equilibrium behavior of seasonality patterns and economies of scale resulting from

fixed setup costs.

Table 5.2 displays the equilibrium in our base example (Example 5.2) under each

of the six seasonality patterns (I)–(VI) and four combinations of setup cost values: (a)
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Kit = 500; (b) Kit = 1000; (c) Kit = 4000 and (d) Kit = 5400. Each of the cells in the table

corresponds with one of the 24 problem instances. Whenever a unique equilibrium

exists, we display, sequentially, the equilibrium prices (p∗), volumes(δ∗), profit levels

(π∗) and the number of order periods (n∗) for each firm. (If no equilibrium exists, or

in case multiple equilibria arise, the cell is left empty.)

In our example, firms 2 and 3 have identical characteristics. Firm 1 has a larger

intercept as well as a significantly higher ‘total price sensitivity’ defined by b̄i = bi −
∑
j �=iΘij > 0, see (5.5). (The total price sensitivity measures the marginal decline in sales

volume due to a universal price increase in the industry; note b̄1 = 8 and b̄2 = b̄3 = 1.)

The larger total price sensitivity for firm 1 induces it to adopt a lower price than his

competitors, in each of the 24 problem instances considered, the lower direct price

sensitivity 10 = ∂δii(p)
∂p1 = b1 < b2 = b3 = 12 not withstanding.

While the differences in the price equilibria are relatively small, they often have

very significant impacts on equilibrium volumes and in particular equilibrium profits.

For example, when Kit = 4000, firm 1’s profit is nearly 25% larger under the cyclic

seasonality pattern (VI) than under constant demands (I). When K1
t = 5400 firm 1 more

than doubles its profit when moving from the constant demand pattern (I) to a pattern

with a holiday season at the beginning (IV). The profit increases for firm 2 and 3, when

moving from (I) to (IV), are in absolute terms, approximately equal that experienced by

firm 1, even though in relative terms they amount to an increase of approximately 16%.

It is hard to predict which seasonality pattern results in higher equilibrium prices:

for K1
t = 500, the prices under the constant pattern (I) are lower than those under the

cyclic pattern (VI) but the opposite is true for Kit = 4000. Note, also, that the impact
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of a cost increase on the equilibrium prices may vary rather significantly depending

on which of the seasonality patterns prevails. Under (I), equilibrium prices increase by

$0.30 for firm 1 and $0.20 for firms 2 and 3, while the price increases under (VI) are

$0.99 for firm 1 and $0.62 for firms 2 and 3. The order pattern, in general, and the

number of order periods, in particular, vary greatly by firm and by seasonality pattern,

see for example the case where Kit = 1000.
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When Kti = 4000, a unique equilibrium continues to exist under all seasonality

patterns except for (IV). Here, there are at least two equilibria p∗1 = [34.03; 36.28; 36.40]

and p∗2 = [34.03; 36.40; 36.28]. (These equilibria are both interior points of the feasible

region.) The tatônnement scheme may, in this case, converge to either one of the

two equilibria or it cycles through the points p∗1 = [34.02; 36.40; 36.40] and p∗2 =

[34.04; 36.28; 36.28].

When Kti = 5400, an equilibrium fails to exist for pattern (VI): the tatônnement

scheme never converges, irrespective of the starting point. Instead, the scheme cycles

between the two price points p∗1 = [35.24; 36.54; 36.54] and p∗2 = [35.25; 36.60; 36.60].

We conclude that the seasonality patterns of the demand functions (as well as the

cost parameters) may result in significant differences in the equilibria. Sometimes,

the seasonality pattern determines whether a unique equilibrium, no equilibrium or

multiple equilibria prevail. The latter two cases arise, of course, in settings where

conditions (C) and (C2) are violated.

We conclude this Section with a set of six problem instances with additive rather

than multiplicative seasonality factors for the demand function, i.e. βit = 1. The six

instances are obtained from the base case in Example 5.2 (where all αit = 0), merely by

varying the
{
αit
}

terms. The seasonality patterns are the direct analog of (I)–(VI) in the

case of multiplicative seasonalities.

For each pattern, we obtain the αit-terms from the βit-factors for the same pattern,

employing the transformation αit = 100(βit − 1). (Note that 1
54

∑54
t=1α

i
t = 0 ∀i.) Table

5.3 displays the equilibrium prices, demand values, profits and number of setups for

the 6 instances. As in the case of multiplicative seasonalities, we note that the differ-
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ences in the equilibrium prices are modest. At the same time, major differences in the

number of setup periods may arise, translating into equilibrium profit differences of

up to 8.4%. The differences become even larger when the setup cost parameters Kit are

increased, see Table 5.2. As in the case of multiple seasonalities, all firms may be bet-

ter off under seasonally varying demands or cost parameters, once again contradicting

common folklore.
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