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Lecture 6

m General Overview of Non-Linear Programming
m Portfolio Optimization - Part II
4The Efficient Frontier and Correlation
4An Example with Real Data
iAdjusting the data to match forecasts

8Adding a constraint on the number of securities in an
optimal  portfolio

m Summary and Preparation for next class
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Nonlinear Programming

min y = x sin(πx)
     x

subject to:
  (Upper bound)        x ≤ 6

        (Lower bound)        x ≥ 0

Graph of x sin(π x) vs. x
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Nonlinear Programming (continued)

m Starting from x = 0:   the optimizer converges to

                (1)  x* = 1.56, y* = -1.53.
Starting from x = 3:   the optimizer converges to

                (2)  x* = 3.53, y* = -3.51.

Starting from x = 5:   the optimizer converges to
               (3)  x* = 5.52, y* = -5.51.

The solution returned by the optimizer depends on the starting point.

(1) and (2) are local minima of the nonlinear program.
(3) is the global minimum, i.e., it is the true optimal solution.

m In general, optimizers are not guaranteed to give global optimal
solutions to nonlinear programs.
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Nonlinear Programming (continued)

m Not all nonlinear programs have local optima.  In fact, mean-variance
models are well-behaved:  the only local optimum is also a global
optimum.  A sample graph of portfolio standard deviation versus portfolio
weights x1 and x2 is given below.  For mean-variance problems, the
optimizer should return the correct global-optimal solution.

Portfolio
Standard
Deviation

x1 x2
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The Efficient Frontier and Correlation:
Examples with Two Securities

m Suppose you have two securities that are highly correlated.

m Let’s say there are 10 equal-probability scenarios.
m Data:

Scenario returns r(i,j)
          by Security

Scenario A B
1 5.33 4.06
2 2.54 1.26
3 1.43 1.38
4 4.55 3.29
5 2.44 1.11
6 -0.22 -0.34
7 -4.44 -4.87
8 -0.22 -1.31
9 0.58 0.78

10 -0.92 -1.12

Average 1.11 0.42
StdDev 2.69 2.40

Correlation
Sec A vs. Sec B 0.98
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High Positive Correlation

m For these two highly (positively) correlated securities, the efficient
frontier is very nearly a straight line, from security A (representing a
100% investment in A) to security B (representing a 100% investment
in security B).

m There are very little or no benefits to “diversification” in this case.

Efficient Frontier for a Portfolio of Two Stocks with 
Correlation +0.98
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Low Correlation (Uncorrelated returns)

m Now suppose you have two securities that are not very correlated (say
correlation close to 0).

m Again, let’s say there are 10 scenarios (with equal probabilities).

m Data:
Scenario returns r(i,j)
          by Security

Scenario A B
1 5.33 3.47
2 2.54 -2.74
3 1.43 -1.27
4 4.55 -2.53
5 2.44 3.22
6 -0.22 1.33
7 -4.44 -1.22
8 -0.22 -0.80
9 0.58 3.41

10 -0.92 1.52

Average 1.11 0.44
StdDev 2.69 2.32

Correlation
Sec A vs. Sec B 0.11
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Low Correlation

m The efficient frontier is a curve extending to the left of both A and B.

m This illustrates the benefits of diversification.

Efficient Frontier for Two Stocks with Low 
Correlation
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Very Negative Correlation

m Now suppose you have two securities that are highly negatively
correlated (say correlation close to -1).

m Again, let’s say there are 10 scenarios (with equal probabilities).

m Data:
Scenario returns r(i,j)
          by Security

Scenario A B
1 5.33 -4.14
2 2.54 -1.51
3 1.43 0.64
4 4.55 -1.48
5 2.44 -0.41
6 -0.22 1.21
7 -4.44 4.45
8 -0.22 1.26
9 0.58 2.44

10 -0.92 1.91

Average 1.11 0.44
StdDev 2.69 2.30

Correlation
Sec A vs. Sec B -0.94
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Very Negative Correlation

m The efficient frontier is almost a straight line.

m It is possible to construct a nearly risk-less portfolio with these 2 stocks.

Efficient Frontier for Two Stocks with -0.94 
Correlation
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Portfolio Optimization (continued)

SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL
Jan-96 0.8% 5.4% -0.5% 18.7% -13.3% 1.2% 12.3% 6.9% 2.2% -2.7%
Feb-96 14.1% 6.7% -2.6% 13.0% -0.5% -2.4% -2.6% -5.5% 5.9% 6.5%
Mar-96 -16.7% 4.5% 3.9% -9.3% -10.7% 3.4% -1.3% -6.0% 10.0% -3.3%
Apr-96 24.0% 9.8% 1.9% -3.1% -0.8% -0.3% 0.3% -2.8% 4.4% 19.1%

May-96 15.4% 4.9% 1.6% -0.9% 7.2% 4.0% 5.3% 6.8% 1.7% 11.4%
Jun-96 -6.0% 1.2% -5.0% -7.3% -19.6% 3.1% 1.7% 0.0% -11.3% -2.7%
Jul-96 -7.2% -1.9% -6.9% 8.6% 4.8% -1.5% -3.5% -0.6% 0.0% 2.3%

Aug-96 -0.5% 3.9% 1.8% 6.4% 10.2% -0.4% 3.1% 2.1% 3.5% 6.2%
Sep-96 14.3% 7.7% -3.3% 8.9% -8.5% 9.7% 4.1% 7.2% -6.7% 19.6%
Oct-96 -1.8% 4.1% 11.7% 3.6% 3.7% 1.5% -3.9% 5.0% 0.0% 15.1%
Nov-96 -4.5% 14.3% 7.5% 23.5% 4.9% 9.8% 8.1% 12.4% 4.8% 15.5%
Dec-96 -11.8% 5.3% -3.3% -4.9% -13.5% -1.0% -6.6% -4.1% -1.5% 3.2%
Jan-97 23.6% 23.4% 5.8% 3.5% -20.4% 7.4% 16.1% 13.8% -0.4% 23.9%
Feb-97 -2.8% -4.4% -1.9% -8.4% -2.3% 3.9% -0.4% 1.7% 2.3% -12.6%
Mar-97 -6.5% -6.0% -4.3% -4.5% 12.3% -4.5% -8.0% -8.5% -4.6% -1.9%
Apr-97 -0.2% 32.5% 4.5% 16.9% -6.8% 9.6% 15.6% 7.3% 10.8% 10.1%

May-97 11.9% 2.1% -0.9% 7.8% -2.2% 9.6% -1.8% -0.6% 7.9% -1.1%
Jun-97 15.4% 1.9% -2.8% 4.3% -14.3% 2.4% 7.3% 13.8% 1.3% -6.4%
Jul-97 22.8% 12.0% 11.0% 17.2% 22.8% 7.7% -3.5% 1.5% 7.6% 29.5%

Aug-97 5.6% -6.6% 1.4% -4.1% 24.3% -12.5% -8.8% -11.6% 5.2% 0.3%
Sep-97 -3.0% 0.1% 6.7% 4.6% -0.3% 3.8% 1.8% 8.9% 4.9% 0.2%
Oct-97 -26.8% -1.7% -4.1% -7.1% -21.5% -1.5% -0.5% -10.7% -3.2% -16.6%
Nov-97 5.1% 8.8% -5.1% 11.2% 4.2% 12.0% 9.7% 6.2% -1.6% 0.8%
Dec-97 10.8% -8.7% 5.8% -4.5% -26.1% 4.8% 4.7% 11.8% 12.9% -9.5%

Monthly Returns in %

m Using historical stock-return data, it is possible to develop meaningful
scenarios.  Consider the following ten stocks: Apple, GM, IBM, Merck,
Ford, J&J, P&G, Sun, Intel and Microsoft.  We list their monthly returns
during the period from January 1996 to December 1997 (24 months).
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Portfolio Optimization (continued)
m We expand the spreadsheet model to include these ten stocks and the

24 scenarios.

m We assign a probability of 1/24=0.04167% to each scenario.
m The rest of the spreadsheet is as in the previous example.

m Some questions:
4 For each stock, we can calculate the mean and standard deviation

of the return in our model:

4 Are these accurate reflections of returns in the coming month?  How
about correlations between the stocks? Are they reflected here?

SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL
             Mean= 3.2% 5.0% 1.0% 3.9% -2.8% 2.9% 2.0% 2.3% 2.3% 4.5%
     Stnd. Dev.= 12.8% 9.0% 5.1% 9.3% 13.0% 5.5% 6.7% 7.4% 5.5% 11.4%
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Do the historical means accurately reflect the mean returns in
the coming month?

m Suppose we do not believe that the historical mean returns are an
accurate reflection of the returns that might be expected in the coming
month.

m History is not likely to repeat itself exactly - so we revise the mean
return estimates, but assume continuation of past volatility levels and
correlation.

m One method of doing this is using CAPM (Capital Asset Pricing Model).

m To do that, we need the following:

4 rm = an estimate of market’s expected return in the coming month
4 rf = an estimate of the risk-free rate over the coming month

4 For each security, βi = security i’s beta.
m Let’s say the following: rm=15%/12=1.25% and rf=6%/12=0.5%.
m The betas of the ten securities are:

m How do we adjust the means, and the optimization model?

SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL
1.41     1.37     1.13     1.08     0.52     0.81     0.94     1.01     1.04     1.25     



Decision Models    Lecture 6    14

Adjusting the historical means (cont.)

m The new means are calculated as follows (from CAPM):

4 Let µ be the average return of security A, with β = beta of A.
4 Then, µ is calculated as follows:

µ = rf + β (rm-rf)
m This means that we can determine estimated average returns for each

of the securities.
m We get:

m It is easy then to adjust the means to these numbers.  However,
remember our optimization model does not read the “mean return” cell,
it works off of the scenarios.  So we must adjust the scenario returns so
that their mean matches these adjusted means.

SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL
Historical Means= 3.2% 5.0% 1.0% 3.9% -2.8% 2.9% 2.0% 2.3% 2.3% 4.5%

New Estimated Means= 1.6% 1.5% 1.3% 1.3% 0.9% 1.1% 1.2% 1.3% 1.3% 1.4%
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Adjusting the historical means (cont.)

m How do we then adjust the historical scenario returns to match the new
adjusted means?

m The simplest way to do this is to shift all the scenario outcomes by the
required amount.  To understand this, take one of the securities, say
MSFT.

4 Its historical monthly mean return was 5.0%.

4 Our revised estimate is 1.5%, or 3.5% lower.
4 So subtract 3.5% from each of MSFT’s historical scenario returns.

4 Repeat this for each security.

m What do we do about the standard deviations? Are the correlations
intact?

m Now we can run the model.

m We want to determine the minimum-risk (i.e., minimum-standard-
deviation) portfolio that invests 100% in these stocks and achieves a
mean portfolio return of at least 1.35% during the next month. How
diversified is this portfolio?
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Optimized Spreadsheet

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

A B C D E F G H I J K L M N O
TEN-STOCKS.XLS Investment Non-Linear Program

Sum of Portfolio Weights
Avg. Portfolio Portfolio Portfolio Weights x(j) 100% = 100%

Return Stnd. Dev. SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL
1.35% 4.43% 5.1% 13.0% 46.5% 0.0% 0.0% 0.0% 10.5% 0.0% 24.8% 0.0%

>= SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL
Min Return 1.35%              Mean= 1.6% 1.5% 1.3% 1.3% 0.9% 1.1% 1.2% 1.3% 1.3% 1.4%

     Stnd. Dev.= 12.8% 9.0% 5.1% 9.3% 13.0% 5.5% 6.7% 7.4% 5.5% 11.4%

                     Adjusted Mean= 1.6% 1.5% 1.3% 1.3% 0.9% 1.1% 1.2% 1.3% 1.3% 1.4%

Scen- Proba- Portfolio Return Security Returns by Scenario
ario bilities by Scenario SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL

1 1/24 1.7% -0.8% 2.0% -0.1% 16.1% -9.7% -0.6% 11.5% 5.8% 1.1% -5.7%
2 1/24 0.9% 12.5% 3.2% -2.2% 10.4% 3.2% -4.2% -3.4% -6.6% 4.9% 3.5%
3 1/24 3.2% -18.3% 1.1% 4.3% -11.9% -7.0% 1.5% -2.2% -7.1% 8.9% -6.3%
4 1/24 3.8% 22.4% 6.4% 2.3% -5.8% 2.9% -2.1% -0.6% -3.8% 3.3% 16.1%
5 1/24 2.5% 13.8% 1.4% 2.0% -3.5% 10.8% 2.2% 4.4% 5.8% 0.7% 8.4%
6 1/24 -5.8% -7.6% -2.3% -4.6% -9.9% -16.0% 1.3% 0.8% -1.0% -12.4% -5.8%
7 1/24 -4.9% -8.8% -5.3% -6.5% 6.0% 8.4% -3.3% -4.4% -1.6% -1.1% -0.7%
8 1/24 1.8% -2.1% 0.5% 2.2% 3.8% 13.9% -2.2% 2.3% 1.1% 2.4% 3.2%
9 1/24 -1.7% 12.6% 4.2% -2.9% 6.2% -4.9% 7.9% 3.2% 6.2% -7.8% 16.6%

10 1/24 4.8% -3.4% 0.6% 12.1% 1.0% 7.3% -0.3% -4.7% 3.9% -1.1% 12.1%
11 1/24 6.4% -6.1% 10.9% 7.8% 20.9% 8.5% 8.0% 7.3% 11.3% 3.7% 12.4%
12 1/24 -3.2% -13.4% 1.9% -2.9% -7.6% -9.8% -2.8% -7.4% -5.1% -2.6% 0.2%
13 1/24 7.9% 22.0% 20.0% 6.2% 0.9% -16.7% 5.6% 15.2% 12.8% -1.4% 20.9%
14 1/24 -1.8% -4.4% -7.9% -1.5% -11.0% 1.4% 2.1% -1.3% 0.6% 1.3% -15.6%
15 1/24 -5.8% -8.1% -9.4% -3.9% -7.1% 16.0% -6.3% -8.9% -9.6% -5.6% -5.0%
16 1/24 9.9% -1.8% 29.1% 4.9% 14.3% -3.2% 7.8% 14.8% 6.2% 9.7% 7.0%
17 1/24 1.5% 10.3% -1.4% -0.5% 5.2% 1.4% 7.8% -2.7% -1.6% 6.9% -4.1%
18 1/24 0.1% 13.8% -1.5% -2.4% 1.7% -10.6% 0.6% 6.5% 12.8% 0.3% -9.4%
19 1/24 8.6% 21.1% 8.5% 11.4% 14.6% 26.5% 5.9% -4.3% 0.5% 6.5% 26.5%
20 1/24 -0.2% 4.0% -10.0% 1.8% -6.8% 27.9% -14.3% -9.6% -12.6% 4.1% -2.7%
21 1/24 3.7% -4.6% -3.3% 7.1% 1.9% 3.4% 2.0% 0.9% 7.8% 3.9% -2.8%
22 1/24 -5.1% -28.4% -5.2% -3.7% -9.7% -17.8% -3.3% -1.4% -11.7% -4.2% -19.6%
23 1/24 -1.0% 3.5% 5.4% -4.7% 8.6% 7.9% 10.2% 8.9% 5.2% -2.6% -2.2%
24 1/24 5.1% 9.2% -12.1% 6.2% -7.1% -22.4% 3.0% 3.8% 10.8% 11.9% -12.5%
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Portfolio Optimization Solver Parameters

The solver parameters dialog box
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Portfolio Optimization (continued)

m As can be seen from the optimized spreadsheet, the model suggests to
invest in positive quantities in these five stocks:

4 SUN MSFT     GM     J&J     FORD
5.1% 13.0%     46.5%    10.5%     24.8%

4 It invests nothing in IBM, APPLE, P&G, Merck or Intel.

m The average portfolio return is: 1.35%.
m The standard deviation (SD) of the portfolio return is: 4.43%.

m Comments:
4 The portfolio is heavily invested (46.5+24.8=71.3%) in the two

“safest” stocks (Ford and GM), as measured by SD.

4 The portfolio is invested in J&J (with average return 1.2%) but not
in Intel (average return 1.4%).

4 Our average portfolio return is 1.35%, which is exactly the minimum
average return we had specified.
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The Efficient Frontier

m Suppose we want to vary the minimum mean return (δ) of the portfolio.

m Using SolverTable, we can vary δ and trace out an efficient frontier.
m Consider minimizing SD and varying δ from 1.18% to 1.6% in

increments of 0.01%.  How does the minimal SD vary? What are the
optimal portfolios?

Efficient Frontier (10 Stocks)

SUN

APPLE

INTEL

IBM

MSFT

GM

FORD MERCK
J&J

P&G

0.8%

0.9%

1.0%

1.1%

1.2%

1.3%

1.4%

1.5%

1.6%

2% 4% 6% 8% 10% 12% 14%

Standard Deviation of Portfolio Return

A
ve

ra
ge

 P
or

tf
ol

io
 R

et
ur

n



Decision Models    Lecture 6    20

Portfolio Profile as a function of Minimum Mean Return

m This graph demonstrates the makeup of the portfolio as δ (the minimum
average-portfolio return) is increased from 1.18% to 1.56%.

Portfolio Profile for varying values of the minimum 
portfolio return
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Portfolio Optimization (without non-negativity)

m Consider the same optimization problem, but now without the non-
negativity constraints.  That is, find the portfolio with the minimum
standard deviation of return (SD) that achieves a mean portfolio return
of at least 1.35%.

m Removing the non-negativity constraints allows for shorting stocks.

m What is shorting a stock?

4 Assume IBM today sells for $160/share and in one month its price
is $140/share.  During the month, IBM’s return was -12.5%.

4 If you buy a share today and sell it one month from now your cash
flows are:

Today A Month From Now

-$160        +$140

4 If you short a share today and “buy” it a month from now, your cash
flows are:

Today A Month From Now
+$160        -$140

4 If you short IBM stock during this month, your return is +12.5%.
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Optimized Spreadsheet (without non-negativity)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

A B C D E F G H I J K L M N O
TEN-STOCKS.XLS Investment Non-Linear Program

Sum of Portfolio Weights
Avg. Portfolio Portfolio Portfolio Weights x(j) 100% = 100%

Return Stnd. Dev. SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL
1.35% 4.19% 16.9% 28.6% 75.5% 2.3% 6.1% 14.3% 3.7% -11.6% -3.7% -32.2%

>= SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL
Min Return 1.35%              Mean= 1.6% 1.5% 1.3% 1.3% 0.9% 1.1% 1.2% 1.3% 1.3% 1.4%

     Stnd. Dev.= 12.8% 9.0% 5.1% 9.3% 13.0% 5.5% 6.7% 7.4% 5.5% 11.4%

                     Adjusted Mean= 1.6% 1.5% 1.3% 1.3% 0.9% 1.1% 1.2% 1.3% 1.3% 1.4%

Scen- Proba- Portfolio Return Security Returns by Scenario
ario bilities by Scenario SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL

1 1/24 1.6% -0.8% 2.0% -0.1% 16.1% -9.7% -0.6% 11.5% 5.8% 1.1% -5.7%
2 1/24 0.5% 12.5% 3.2% -2.2% 10.4% 3.2% -4.2% -3.4% -6.6% 4.9% 3.5%
3 1/24 2.4% -18.3% 1.1% 4.3% -11.9% -7.0% 1.5% -2.2% -7.1% 8.9% -6.3%
4 1/24 2.2% 22.4% 6.4% 2.3% -5.8% 2.9% -2.1% -0.6% -3.8% 3.3% 16.1%
5 1/24 1.9% 13.8% 1.4% 2.0% -3.5% 10.8% 2.2% 4.4% 5.8% 0.7% 8.4%
6 1/24 -4.0% -7.6% -2.3% -4.6% -9.9% -16.0% 1.3% 0.8% -1.0% -12.4% -5.8%
7 1/24 -7.5% -8.8% -5.3% -6.5% 6.0% 8.4% -3.3% -4.4% -1.6% -1.1% -0.7%
8 1/24 0.9% -2.1% 0.5% 2.2% 3.8% 13.9% -2.2% 2.3% 1.1% 2.4% 3.2%
9 1/24 -3.5% 12.6% 4.2% -2.9% 6.2% -4.9% 7.9% 3.2% 6.2% -7.8% 16.6%

10 1/24 4.7% -3.4% 0.6% 12.1% 1.0% 7.3% -0.3% -4.7% 3.9% -1.1% 12.1%
11 1/24 5.0% -6.1% 10.9% 7.8% 20.9% 8.5% 8.0% 7.3% 11.3% 3.7% 12.4%
12 1/24 -4.7% -13.4% 1.9% -2.9% -7.6% -9.8% -2.8% -7.4% -5.1% -2.6% 0.2%
13 1/24 6.4% 22.0% 20.0% 6.2% 0.9% -16.7% 5.6% 15.2% 12.8% -1.4% 20.9%
14 1/24 0.8% -4.4% -7.9% -1.5% -11.0% 1.4% 2.1% -1.3% 0.6% 1.3% -15.6%
15 1/24 -4.5% -8.1% -9.4% -3.9% -7.1% 16.0% -6.3% -8.9% -9.6% -5.6% -5.0%
16 1/24 10.2% -1.8% 29.1% 4.9% 14.3% -3.2% 7.8% 14.8% 6.2% 9.7% 7.0%
17 1/24 3.5% 10.3% -1.4% -0.5% 5.2% 1.4% 7.8% -2.7% -1.6% 6.9% -4.1%
18 1/24 1.3% 13.8% -1.5% -2.4% 1.7% -10.6% 0.6% 6.5% 12.8% 0.3% -9.4%
19 1/24 8.4% 21.1% 8.5% 11.4% 14.6% 26.5% 5.9% -4.3% 0.5% 6.5% 26.5%
20 1/24 0.5% 4.0% -10.0% 1.8% -6.8% 27.9% -14.3% -9.6% -12.6% 4.1% -2.7%
21 1/24 4.0% -4.6% -3.3% 7.1% 1.9% 3.4% 2.0% 0.9% 7.8% 3.9% -2.8%
22 1/24 -3.1% -28.4% -5.2% -3.7% -9.7% -17.8% -3.3% -1.4% -11.7% -4.2% -19.6%
23 1/24 1.3% 3.5% 5.4% -4.7% 8.6% 7.9% 10.2% 8.9% 5.2% -2.6% -2.2%
24 1/24 4.1% 9.2% -12.1% 6.2% -7.1% -22.4% 3.0% 3.8% 10.8% 11.9% -12.5%
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Solver Options Dialog Box

m Note “Assume Linear Model” is not checked in the Solver Options
Dialog Box.
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Portfolio Optimization (without non-negativity)

m The new optimal portfolio has a standard deviation of 4.19%.  This is
less than the 4.43% we had before (with the non-negativity).

m The optimal portfolio has an average portfolio return of 1.35%.

m The optimal portfolio is as follows:
4 SUN MSFT GM     IBM         APPLE
4 16.9% 28.6% 75.5%      2.3%           6.1%
4 P&G     J&J     MERCK    FORD         INTEL
4 14.3% 3.7% -11.6%      -3.7%         -32.2%

m Comments:

4 Ford is now shorted, while the previous portfolio was long on Ford.
4 Intel heavily shorted.
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Efficient Frontier (without non-negativity)

m Using SolverTable, we can vary the δ (the minimum average return)
and trace out an efficient frontier when we allow shorting.

m Consider minimizing SD and varying δ from 0% to 3% in increments of
0.1%. How does the efficient frontier with shorting compare to the one
without shorting?

Comparison of Efficient Frontiers with and without shorting
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Model Enhancements

m The minimum-risk portfolio in our first ten-stock model (w/o short
selling) that had an average return of 1.35% was the following:

4 SUN MSFT     GM     J&J     FORD
5.1% 13.0%     46.5%    10.5%     24.8%

4 It invests nothing in IBM, APPLE, P&G, Merck or Intel.

m The average portfolio return is: 1.35%.

m The standard deviation (SD) of the portfolio return is: 4.43%.

m The portfolio invested in 5 securities.
m What if we wanted to find the minimum-risk portfolio that had at least a

1.35% average return but invested in at most 2 securities.

m How could we modify our model to handle that?
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Model Enhancements (cont.)
m Let’s go back to our formulation from Lecture 5, which we wrote as

follows:

min SD
subject to:
(r1  def.)      r1  =  5.51 x1 + 1.95 x2 +  2.56 x3

(r2  def.)      r2  = −1.24 x1 + 2.26 x2 +  0.16 x3

(r3  def.)      r3  =  5.46 x1  − 4.07 x2 − 0.64 x3

(r4  def.)      r4  = −1.90 x1 + 3.59 x2 +  0.30 x3

(rP  def.)      rP  = 0.25 r1 +0.25 r2 +  0.25 r3 +0.25 r4

    (Min. rP)       rP  ≥  δ
   (Risk)      SD = STDEVP(r1, r2, r3, r4)

     (Budget)      x1 + x2 + x3  = 1
  (non-neg.)      x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

m The minimum-risk portfolio that had an average return of at least 1%
invested in all 3 securities (x1=23.2%, x2=26.4% and x3=50.4%).

m Say we want to add a constraint that we can invest in at most 2
securities?
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Model Enhancements (cont.)

m Recall that xi is the fraction of our fortune that is invested in security i.
m The xi’s satisfy the following constraints:
4 Budget:      x1 + x2 + x3  = 1

4 Non-neg.     x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

m We need a way to count the number of securities that a portfolio invests
in.

m To do this we define 3 new integer (binary) variables, y1, y2 and y3, one
for each security.  These variables will be either 0 or 1.

m Then add the following constraints:
4 x1 ≤ y1

4 x2 ≤ y2

4 x3 ≤ y3

4 y1 + y2 + y3 ≤ 2
4 y1, y2, y3 binary

m This will achieve the desired result.
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Model Enhancements (cont.)

m For our ten-stock example, we need to add 10 new binary variables (one
per security), a constraint linking xi and yi and one constraint limiting the
sum of the y-variables.

m We show the optimized spreadsheet below:

=SUM(F5:O5)

New Binary Decision Variables (y)

Decision variables (x)

=IF(F4<=F7+0.001,“<=”,“Not <=”)

=IF(F9<=H9+0.001,“<=”, “Not <=”)

1
2
3
4
5
6
7
8
9

10

A B C D E F G H I J K L M N O
TEN-STOCKS.XLS Investment Non-Linear Program

Sum of Portfolio Weights
Avg. Portfolio Portfolio Portfolio Weights x(j) 100% = 100%

Return Stnd. Dev. SUN MSFT GM IBM APPLE P&G J&J MERCK FORD INTEL
1.35% 5.05% x 0.0% 28.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 71.7% 0.0%

>= <= <= <= <= <= <= <= <= <= <=
Min Return 1.35% y 0 1 0 0 0 0 0 0 1 0

sum= 2 <= 2 =limit
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Model Enhancements (cont.)

The Solver Parameters dialog box.
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Model Enhancements (cont.)

The Solver Options dialog box.

m Solving problems with binary variables may require giving the computer
more time to solve and increasing the precision.  Here note that “Tolerance”
is set to 0%. It should take more time to solve than a problem without
integer variables.
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Model Enhancements (cont.)

m Our new optimal portfolio invests in the following stocks:

4 MSFT  FORD
28.3%  71.7%

m The average portfolio return is: 1.35%.

m The standard deviation (SD) of the portfolio return is: 5.05%.
m Here is a graph of the efficient frontiers with and without the extra

constraint on the number of stocks in the portfolio.

The Efficient Frontiers
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Summary

m Non-linear programming

m The effect of correlation on the efficient frontier
m An example with real data

4 Adjusting the data to match forecasts

m Adding a constraint to limit the number of securities in an optimal
portfolio

For next class
m Solve the “GMS Stock Hedging” case, pp.330-331 in the W&A text.

(Prepare to discuss the case in class, but do not write up a formal
solution.)

m Read Chapter 7.3 in the W&A text.


